Теория вероятностей и математическая статистика. Билялов Р.Ф. - 60 стр.

UptoLike

Составители: 

=
e
iat
2π
Z
−∞
(cos σut + i sin σut)e
u
2
2
du =
e
iat
2π
Z
−∞
cos(σut) e
u
2
2
du.
g(t) =
1
2π
Z
−∞
cos(σut) e
u
2
2
du.
g
0
(t) =
σ
2π
Z
−∞
u sin(σut) e
u
2
2
du = σ
2
tg(t).
g(t)
g
0
(t) = σ
2
tg(t) g(0) = 1.
g(t) = Ce
σ
2
t
2
2
. g(0) = 1
C = 1.
f(t) =
1
2π
e
iatσ
2
t
2
/2
.
f
(k)
(t) =
d
k
dt
k
Me
t
= M()
k
e
t
, f
(k)
(0) = i
k
Mξ
k
,
f
+b
(t) = Me
i(+b)t
= e
ibt
Me
(at)
= e
ibt
f
ξ
(at),
ξ
1
, ξ
2
f
ξ
1
+ξ
2
(t) = Me
i(ξ
1
+ξ
2
)t
= Me
1
t
e
2
t
= Me
1
t
Me
2
t
= f
ξ
1
(t)f
ξ
2
(t),
ξ
f
ξ
(t) =
R
−∞
e
ixt
p(x)dx p(x)
p(x) =
1
2π
R
e
ixt
f(t)dt, p(x)
F (x) =
x
R
−∞
p(u)du.
ξ
f
ξ
(t) F
ξ
(x)
            Z∞                                                         Z∞
   eiat                                     − u2
                                                2        eiat                             u2
  =√               (cos σut + i sin σut)e           du = √                  cos(σut) e−    2   du.
    2π                                                    2π
           −∞                                                      −∞

Ïóñòü
                                        Z∞
                                   1                              u2
                           g(t) = √          cos(σut) e−           2   du.
                                   2π
                                        −∞

Òîãäà
                                 Z∞
               0        σ                                  u2
             g (t) = − √              u sin(σut) e−         2   du = −σ 2 tg(t).
                        2π
                                −∞

Èñêîìàÿ ôóíêöèÿ g(t) óäîâëåòâîðÿåò äèôôåðåíöèàëüíîìó óðàâíå-
íèþ g 0 (t) = −σ 2 tg(t) ñ íà÷àëüíûì óñëîâèåì g(0) = 1. Îáùåå ðåøåíèå
                                       2 2
òàêîãî óðàâíåíèÿ  g(t) = Ce−σ t 2 . Èç óñëîâèÿ g(0) = 1 ñëåäóåò,
÷òî C = 1. Çíà÷èò,
                                     1      2 2
                            f (t) = √ eiat−σ t /2 .
                                     2π
   Ñâîéñòâà õàðàêòåðèñòè÷åñêîé ôóíêöèè:
                  d    k
   1) f (k) (t) = dtk Me
                         iξt = M (iξ)k eiξt , f (k) (0) = ik M ξ k ,

   2) faξ+b (t) = M ei(aξ+b)t = eibt M eiξ(at) = eibt fξ (at),
   3) ïóñòü ξ1 , ξ2  íåçàâèñèìûå ñëó÷àéíûå âåëè÷èíû, òîãäà

  fξ1 +ξ2 (t) = M ei(ξ1 +ξ2 )t = M eiξ1 t eiξ2 t = M eiξ1 t M eiξ2 t = fξ1 (t)fξ2 (t),

     4) ïóñòü ξ  íåïðåðûâíàÿ ñëó÷àéíàÿ âåëè÷èíà, òîãäà
          R∞ ixt
fξ (t) =    e p(x)dx  ýòî ïðåîáðàçîâàíèå Ôóðüå; åñëè p(x) − íåïðå-
        −∞
                                                       1
                                                           R∞
ðûâíî äèôôåðåíöèðóåìà, òî p(x) =                      2π        e−ixt f (t)dt, íî p(x) îäíî-
                                                           ∞
                                                                                Rx
çíà÷íî îïðåäåëÿåò ôóíêöèþ ðàñïðåäåëåíèÿ F (x) =                                      p(u)du. Òà-
                                                                               −∞
êèì îáðàçîì, åñëè ξ − íåïðåðûâíàÿ ñëó÷àéíàÿ âåëè÷èíà, òî ìåæäó
fξ (t) u Fξ (x) ñóùåñòâóåò íåïðåðûâíîå âçàèìíî îäíîçíà÷íîå ñîîòâåò-
ñòâèå. Îêàçûâàåòñÿ, ýòî âåðíî äëÿ ëþáûõ ñëó÷àéíûõ âåëè÷èí.
     Öåíòðàëüíàÿ ïðåäåëüíàÿ òåîðåìà.

                                             60