Теория вероятностей и математическая статистика. Билялов Р.Ф. - 63 стр.

UptoLike

Составители: 

P (m 2048 m 1992) =
= 2P (
m2020
4040·0.5·0.5
28
1010
) = 2(x
m
0.9) = 2(0.5 0.32) = 1 0.64 =
0.36.
λ = 20 = m
X
. A = {X
20}; B = {10 < X < 30}.
ξ λ.
λ
ξλ
λ
P (A) = P (X 20) = P (
X20
20
2020
20
1
2π
R
0
e
t
2
2
dt = 0.5,
P (B) = P (10 X 30) = P (
¯
¯
¯
¯
X20
20
¯
¯
¯
¯
<
10
20
) 2 ·0.49 = 0.98.
p(x) = αe
αx
, x > 0. f(t) = M e
t
=
R
0
αe
αx
e
ixt
dx =
α
αit
.
cos t.
f(t) = cos t =
e
it
+e
it
2
=
1
2
· e
i(1)t
+
1
2
· e
i·1·t
,
x
k
p
k
10
4
10
m
.
(0.5 ·10
m
; 0.5 ·10
m
)
n = 10
4
. ξ
k
[α, α], α =
0.5 · 10
m
, k = 1, 2, ..., n. η =
n
P
k=1
ξ
k
Mξ
k
= 0.
    Çàäà÷à 14.568.  îïûòå Áþôôîíà ìîíåòà áûëà ïîäáðîøåíà 4040
pàç, ïðè÷åì ãåðá âûïàë 2048 ðàç. Ñ êàêîé âåðîÿòíîñòüþ ìîæíî ïðè
ïîâòîðåíèè îïûòà ïîëó÷èòü òàêîå æå èëè åùå áîëüøåå îòêëîíåíèå
îòíîñèòåëüíîé ÷àñòîòû óñïåõîâ îò âåðîÿòíîñòè óñïåõà â îäíîì îïû-
òå?
    Ðåøåíèå. n=4040, m=2048, P (m ≥ 2048 èëè m ≤ 1992) =
         m−2020         28
= 2P ( √4040·0.5·0.5 ≥ √1010 ) = 2(xm ≥ 0.9) = 2(0.5 − 0.32) = 1 − 0.64 =
0.36.
    Çàäà÷à 14.574. Ñðåäíåå ÷èñëî âûçîâîâ íà ÀÒÑ çà 1 ìèíóòó ðàâ-
íî λ = 20 = mX . Íàéòè âåðîÿòíîñòè ñëåäóþùèõ ñîáûòèé: A = {X ≥
20}; B = {10 < X < 30}.
    Ðåøåíèå. Ïóñòü ξ ðàñïðåäåëåíà ïî Ïóàññîíó ñ ïàðàìåòðîì λ. Åñ-
ëè λ âåëèêà, òî ξ−λ √ ïîä÷èíÿåòñÿ íîðìàëüíî-ñòàíäàðòíîìó ðàñïðåäå-
                     λ
                                                            R∞ − t2
ëåíèþ. P (A) = P (X ≥ 20) = P ( X−20 √
                                       20
                                          ≥   20−20
                                               √
                                                20
                                                    ≈   √1
                                                         2π
                                                               e 2 dt = 0.5,
                                 ¯     ¯                     0
                                 ¯     ¯
P (B) = P (10 ≤ X ≤ 30) = P (¯¯ X−20
                                   √   ¯ < √10 ) ≈ 2 · 0.49 = 0.98.
                                    20 ¯     20
    Çàäà÷à 7.6(â). Âû÷èñëèòü õàðàêòåðèñòè÷åñêèå ôóíêöèè ñëåäó-
þùèõ çàêîíîâ ðàñïðåäåëåíèÿ: â) ïîêàçàòåëüíîãî.
                                                                R∞
    Ðåøåíèå. â) p(x) = αe−αx , x > 0. f (t) = M eiξt =               αe−αx eixt dx =
                                                                0
 α
α−it .
    Çàäà÷à 7.7(à). Íàéòè çàêîí ðàñïðåäåëåíèÿ, ñîîòâåòñòâóþùèé
õàðàêòåðèñòè÷åñêîé ôóíêöèè cos t.
                                   it   −it
    Ðåøåíèå. f (t) = cos t = e +e     2      = 12 · ei(−1)t + 12 · ei·1·t , ïîýòîìó
                                    x       -1      1
ðÿä ðàïðåäåëåíèÿ èìååò âèä: k
                                    pk 0.5 0.5
    Çàäà÷à 7.11. Ñêëàäûâàåòñÿ 104 ÷èñåë, êàæäîå èç êîòîðûõ îêðóã-
ëåíî ñ òî÷íîñòüþ äî 10−m . Ïðåäïîëàãàÿ, ÷òî îøèáêè îò îêðóãëåíèÿ
íåçàâèñèìû è â èíòåðâàëå (−0.5 · 10−m ; 0.5 · 10−m ) ðàñïðåäåëåíû ðàâ-
íîìåðíî, íàéòè ïðåäåëû, â êîòîðûõ ñ âåðîÿòíîñòüþ, íå ìåíüøåé 0.99,
áóäåò ëåæàòü ñóììàðíàÿ îøèáêà.
    Ðåøåíèå. n = 104 . ξk ðàñïðåäåëåíà ðàâíîìåðíî íà [−α, α], α =
                                   P
                                   n
0.5 · 10−m , k = 1, 2, ..., n. η =     ξk  ñóììàðíàÿ îøèáêà. M ξk = 0.
                                    k=1



                                          63