Теория вероятностей и математическая статистика. Билялов Р.Ф. - 71 стр.

UptoLike

Составители: 

a
ν
, m
ν
. a
ν
=
n
k=1
X
ν
k
n
ν, a
1
=
n
k=1
X
1
k
n
=
¯
X
m
ν
=
n
k=1
(X
k
¯
X)
ν
n
ν.
Ma
ν
= M
n
P
k=1
X
ν
k
n
=
1
n
n
X
k=1
MX
ν
k
=
1
n
n
X
k=1
α
k
= α
ν
.
Da
ν
= D
n
P
k=1
X
ν
k
n
=
1
n
2
n
X
k=1
DX
ν
k
=
1
n
2
n
X
k=1
Dξ
ν
=
1
n
(Mξ
2ν
(Mξ)
2
) =
=
α
2ν
α
2
ν
n
.
P (|a
ν
α
ν
| ²)
M(a
ν
α
ν
)
2
²
2
=
Da
ν
²
2
=
α
2ν
α
2
ν
2
0
n . a
ν
P
n→∞
α
ν
.
(α
ν
,
α
2ν
α
2
ν
n
).
η
ν
=
a
ν
α
ν
Da
ν
=
n
P
k=1
X
ν
k
ν
µ
ν
n
,
                                                                           P
                                                                           n
                                                                                 Xkν
ñîïîñòàâëÿþòñÿ âûáîðî÷íûå ìîìåíòû aν , mν . aν =                           k=1
                                                                             n         íàçûâàåò-
                                                                                       P
                                                                                       n
                                                                                           Xk1
ñÿ âûáîðî÷íûì ìîìåíòîì ïîðÿäêà ν, â ÷àñòíîñòè a1 =                                 k=1
                                                                                       n         = X̄
                                                         P
                                                         n
                                                             (Xk   −X̄)ν
íàçûâàåòñÿ âûáîðî÷íûì ñðåäíèì, mν = k=1 n       öåíòðàëüíûé
âûáîðî÷íûé ìîìåíò ïîðÿäêà ν. Âûáîðî÷íûå ìîìåíòû ÿâëÿþòñÿ òî-
÷å÷íûìè îöåíêàìè ñîîòâåòñòâóþùèõ òåîðåòè÷åñêèõ ìîìåíòîâ.
   Íåñìåùåííîñòü îöåíîê òåîðåòè÷åñêèõ ìîìåíòîâ îïðåäåëÿåòñÿ
ñ ïîìîùüþ âûáîðî÷íûõ ìîìåíòîâ:
                         P
                         n
                              Xkν          n                       n
                        k=1            1X         1X
          M aν = M                   =    M Xkν =    αk = αν .
                           n           n          n
                                          k=1                  k=1

   Ñîñòîÿòåëüíîñòü îöåíîê òåîðåòè÷åñêèõ ìîìåíòîâ â âèäå âû-
áîðî÷íûõ ìîìåíòîâ:

          P
          n
              Xkν           n            n
                        1 X          1 X         1
Daν = D k=1         =     2
                              DX ν
                                 k =   2
                                           Dξ ν = (M ξ 2ν − (M ξ)2 ) =
          n             n            n           n
                           k=1                   k=1

                                         α2ν − αν2
                                     =             .
                                             n
Îòêóäà
                               M (aν − αν )2   Daν   α2ν − αν2
      P (|aν − αν | ≥ ²) ≤                   =     =           →0
                                    ²2          ²2     n²2
                                 P
ïðè n → ∞. Ïîýòîìó aν −→ αν .
                        n→∞
   Âûáîðî÷íûå ìîìåíòû îáëàäàþò åù¼ îäíèì ñâîéñòâîì: îíè àñèìï-
                                              2
òîòè÷åñêè íîðìàëüíû ñ ïàðàìåòðàìè (αν , α2νn−αν ). Äëÿ äîêàçàòåë-
ñòâà ýòîãî ñâîéñòâà ðàññìîòðèì
                                                P
                                                n
                                                      Xkν − nαν
                             aν − αν            k=1
                        ην = √       =                   √      ,
                                Daν                   µν n

                                           71