Теория вероятностей и математическая статистика. Билялов Р.Ф. - 95 стр.

UptoLike

Составители: 

Q
β
l
= 0 2z
i
+
2
k1
P
j=0
s
ij
β
j
= 0, Sβ = XY.
β
. β
β. β
=
S
1
(XY ) = (S
1
X)Y = S
1
X(X
T
+ δ) = β + S
1
Xδ.
β
Mβ
= M(β + S
1
Xδ) = Mβ + S
1
XMδ = Mβ = β, β
β.
Dβ
cov(β
, β
T
) =
µ
cov(β
i
, β
j
)
= cov(β+S
1
Xδ, β
T
+δ
T
X
T
S
1
) =
= cov(S
1
Xδ, δ
T
X
T
S
1
) = S
1
Xcov(δ, δ
T
)X
T
S
1
= S
1
Xσ
2
I
n
X
T
S
1
= σ
2
S
1
,
cov(δ
i
, δ
j
) =
µ
0, i 6= j
σ
2
, i = j
, Dδ = cov(δ, δ
T
) = σ
2
I
n
.
e
e = Y X
T
β
= X
T
β + δ X
T
(β + S
1
Xδ) = (I
n
X
T
S
1
X)δ.
α = I
n
X
T
S
1
X , e = αδ. α
T
= α, α
(X
T
S
1
X)
T
= X
T
S
1
X
T
T
=
X
T
S
1
X . Q
0
= e
T
e = δ
T
α
T
αδ = δ
T
αδ, αα = (I
n
X
T
S
1
X)(I
n
X
T
S
1
X) = I
n
2X
T
S
1
X + X
T
S
1
XX
T
S
1
X =
I
n
X
T
S
1
X = α. Q|
β=β
= (Y
T
β
T
X)(Y X
T
β
) =
e
T
e = Q
0
, Q
0
Q. Q
0
α
O (O
T
O = I
n
),
α = O
T
α O, α α
2
=
O
T
α OO
T
α O = O
T
α α O = α = O
T
α O.
α
                                ∂Q
 èòîãå ïîëó÷àåì, ÷òî ñèñòåìà ∂β  l
                                    = 0 ýêâèâàëåíòíà ñèñòåìå −2zi +
  P
  k−1
2     sij βj = 0, êîòîðàÿ â ìàòðè÷íîé çàïèñè èìååò âèä Sβ = XY.
 j=0
Ðåøåíèå ýòîé ñèñòåìû îáîçíà÷èì β ∗ . β ∗  îöåíêà ïàðàìåòðà β. β ∗ =
S −1 (XY ) = (S −1 X)Y = S −1 X(X T + δ) = β + S −1 Xδ.
    3) Ñâîéñòâà β ∗ .
    à) M β ∗ = M (β + S −1 Xδ) = M β + S −1 XM δ = M β = β, β ∗ 
íåñìåùåííàÿ îöåíêà äëÿ β.
    á)
                       µ           ¶
                 ∗T
Dβ ≡ cov(β , β ) = cov(βi , βj ) = cov(β+S −1 Xδ, β T +δ T X T S −1 ) =
    ∗        ∗                ∗  ∗



= cov(S −1 Xδ, δ T X T S −1 ) = S −1 Xcov(δ, δ T )X T S −1 = S −1 Xσ 2 In X T S −1
                                       = σ 2 S −1 ,
òàê êàê
                            µ               ¶
                                0, i 6= j
          cov(δi , δj ) =                       , è Dδ = cov(δ, δ T ) = σ 2 In .
                                σ2, i = j

   4) Íåâÿçêà. Îïðåäåëÿåòñÿ íåâÿçêà e , êîòîðàÿ âû÷èñëÿåòñÿ ñëå-
äóþùèì îáðàçîì:

  e = Y − X T β ∗ = X T β + δ − X T (β + S −1 Xδ) = (In − X T S −1 X)δ.

Îáîçíà÷èì α = In − X T S −1 X, òîãäà e = αδ. αT = α, òî-åñòü α
                                                                     T
 ñèììåòðè÷åñêàÿ ìàòðèöà, òàê êàê (X T S −1 X)T = X T S −1 X T =
X T S −1 X. Ïóñòü Q0 = eT e = δ T αT αδ = δ T αδ, òàê êàê αα = (In −
X T S −1 X)(In − X T S −1 X) = In − 2X T S −1 X + X T S −1 XX T S −1 X =
In − X T S −1 X = α. Ðàññìîòðèì Q|β=β ∗ = (Y T − β ∗T X)(Y − X T β ∗ ) =
eT e = Q0 , òî-åñòü Q0 åñòü ìèíèìóì Q. Q0 íàçûâàåòñÿ îñòàòî÷íîé
ñóììîé êâàäðàòîâ. Ðàç α − ñèììåòðè÷åñêàÿ ìàòðèöà, òî ñóùåñòâó-
åò îðòîãîíàëüíîå ïðåîáðàçîâàíèå O (OT O = In ), ÷òî èìååò ìåñòî
α = OT αdiag O, ãäå ìàòðèöà αdiag  äèàãîíàëüíàÿ ìàòðèöà. Íî α2 =
OT αdiag OOT αdiag O = OT αdiag αdiag O = α = OT αdiag O. Ïîýòîìó, äèà-
ãîíàëüíûå ýëåìåíòû ìàòðèöû αdiag ðàâíû 0 èëè 1. Ñ äðóãîé ñòîðîíû,

                                            95