Расчетно-графические работы по кинематике. Божкова Л.В - 28 стр.

UptoLike

28
При этом нормальное ускорение
n
BA
a
r
направлено вдоль ВА к центру
относительного вращения (к полюсу А), а касательное ускорение
τ
BA
a
r
направлено перпендикулярно ВA в сторону, указанную дуговой стрелкой ε
2
.
Таким образом, в векторном равенстве (22) известны модули и направления
всех четырех векторов, стоящих справа от знака равенства. Для определения
ускорения точки B (
B
a
r
) найдем его проекции на две оси координат x, y,
показанные на рис. 4.5. Проекция
B
a
r
на любую ось равна алгебраической
сумме проекций ускорений
n
A
a
r
,
τ
A
a
r
,
n
BA
a
r
и
τ
BA
a
r
на ту же ось. .Проекции
этих ускорений легко найти из чертежа. Таким образом
2,26,16,0 ===
n
BAABx
aaa
τ
м/с
2
,
4,02,18,0 ===
n
ABABy
aaa
τ
м/с
2
.
По найденным двум проекциям ускорения точки B нетрудно найти его
модуль и направление. Модуль ускорения точки B
24,24,02,2
2222
=+=+=
ByBxB
aaa м/с
2
.
28
                                             rn
      При этом нормальное ускорение a BA          направлено вдоль ВА к центру
                                                                               r
относительного вращения (к полюсу А), а касательное ускорение a τBA
направлено перпендикулярно ВA в сторону, указанную дуговой стрелкой ε2.
Таким образом, в векторном равенстве (22) известны модули и направления
всех четырех векторов, стоящих справа от знака равенства. Для определения
                      r
ускорения точки B ( a B ) найдем его проекции на две оси координат x, y,
                                         r
показанные на рис. 4.5. Проекция a B на любую ось равна алгебраической
                                r      r    rn       r
сумме проекций ускорений a An , a τA , a BA       и a τBA на ту же ось. .Проекции
этих ускорений легко найти из чертежа. Таким образом
                 a Bx = −a τA − a BA
                                  n
                                     = −0,6 − 1,6 = −2,2 м/с2 ,
                 a By = a τBA − a An = 0,8 − 1,2 = −0,4 м/с2 .
     По найденным двум проекциям ускорения точки B нетрудно найти его
модуль и направление. Модуль ускорения точки B
                   a B = a Bx
                           2
                              + a By
                                  2
                                     = 2,2 2 + 0,4 2 = 2,24   м/с2 .