Приближенные методы вычисления интегралов Адамара. Бойков И.В - 82 стр.

UptoLike

83
(
)
()
()( )
12
1, 1
12
1111 2 222
,
pp
D
tnh t nh
−−
ϕτ τ
++
⎡τ ⎡τ +
⎣⎦
rr
()
()
()( )
12
1, 1
12
12
1111 2 222
,
pp
D
dd
tnh t nh
−−
ϕτ τ
τ+
⎡τ + ⎡τ +
⎣⎦
rr
()
() ( )
12
12
12 1 2
1111 2 222
,
1
4
pp
LL
dd
tnh t nh
ϕτ τ τ τ
+−
⎡τ ⎡τ
⎣⎦
∫∫
rr
()
() ( )
11
12
12
12
12
12
12
11
12
00
1111 2 222
,
kk
kk
tt
NN
kk
pp
kk
tt
dd
tt
tnh t nh
++
−−
==
ττ
′′
−ϕ +
⎡τ ⎡τ
⎣⎦
∑∑
∫∫
rr
()
() ( )
12
12
12 1 2
1111 2 222
,
1
4
pp
LL
dd
tnh t nh
ϕτ τ τ τ
+−
⎡τ + ⎡τ
⎣⎦
∫∫
rr
()
() ( )
11
12
12
12
12
12
12
11
12
00
1111 2 222
,
kk
kk
tt
NN
kk
pp
kk
tt
dd
tt
tnh t nh
++
−−
==
ττ
′′
−ϕ +
⎡τ + ⎡τ
⎣⎦
∑∑
∫∫
rr
()
() ( )
12
12
12 1 2
1111 2 222
,
1
4
pp
LL
dd
tnh t nh
ϕτ τ τ τ
+−
⎡τ ⎡τ +
⎣⎦
∫∫
rr
()
() ( )
11
12
12
12
12
12
12
11
12
00
1111 2 222
,
kk
kk
tt
NN
kk
pp
kk
tt
dd
tt
tnh t nh
++
−−
==
ττ
′′
−ϕ +
⎡τ τ +
⎣⎦
∑∑
∫∫
rr
()
() ( )
12
12
12 1 2
1111 2 222
,
1
4
pp
LL
dd
tnh t nh
ϕτ τ τ τ
+−
⎡τ + ⎡τ +
⎣⎦
∫∫
rr
                                               D(
                                                    p1 −1, p2 −1)
                                                           ϕ ( τ1 , τ2 )
                              +                r                         r         +
                                  ⎡τ
                                  ⎣ 1 − ( t1 − n1h1 ) ⎤
                                                      ⎦⎣⎡τ 2 −  ( t 2 + n 2 h2 ) ⎤
                                                                                 ⎦

                                      D(
                                           p1 −1, p2 −1)            ⎞           ⎤⎫
                                                           ϕ ( τ1 , τ2 )          ⎪
                  +               r                      r           ⎟ d τ1d τ2 ⎥ ⎬ +
                    ⎣⎡τ1 − ( t1 + n1h1 ) ⎤⎦ ⎡τ
                                            ⎣ 2 − ( t2 + n2 h2 ) ⎤⎦ ⎠⎟          ⎥
                                                                                ⎦ ⎪⎭

                      1                                 ϕ ( τ1 , τ2 ) d τ1d τ2
                  +       ∫ ∫ − ( t − nr h )⎤ p                                    r          p2
                                                                                                   −
                                                                      ⎣ 2 − ( t2 − n2 h2 ) ⎤⎦
                      4
                          L L ⎡τ                                      ⎡τ
                                                                  1
                          1 2 ⎣ 1  1    1 1 ⎦

    N1 −1 N 2 −1                       tk1 +1 tk2 +1
                                                                            d τ1d τ2
−   ∑ ∑ ϕ ( tk′ , tk′ ) ∫ ∫                                         r        p1                r         p2
                                                                                                            +
                                                             (           )             (             )
                          1       2
    k1 =0 k2 =0                         tk1 tk2        ⎡τ
                                                       ⎣ 1 −   t1 − n1h1   ⎤
                                                                           ⎦ ⎣  ⎡τ 2 −   t 2 − n2 h2   ⎤
                                                                                                       ⎦

                      1                                 ϕ ( τ1 , τ2 ) d τ1d τ2
                  +       ∫ ∫ − ( t + nr h )⎤ p                                    r         p2
                                                                                                   −
                                                                      ⎣ 2 − ( t2 − n2 h2 )⎤⎦
                      4
                          L L ⎡τ                                      ⎡τ
                                                                  1
                          1 2 ⎣ 1  1    1 1 ⎦

    N1 −1 N 2 −1                       tk1 +1 tk2 +1
                                                                            d τ1d τ2
−   ∑ ∑ ϕ ( tk′ , tk′ ) ∫ ∫                                         r        p1                r         p2
                                                                                                            +
                                                             (           )             (             )
                          1       2
    k1 =0 k2 =0                         tk1 tk2        ⎡τ
                                                       ⎣ 1 −   t1 + n1h1   ⎤
                                                                           ⎦ ⎣  ⎡τ 2 −   t 2 − n2 h2   ⎤
                                                                                                       ⎦

                      1                                 ϕ ( τ1 , τ2 ) d τ1d τ2
                  +       ∫ ∫ − ( t − nr h )⎤ p                                    r         p2
                                                                                                   −
                                                                      ⎣ 2 − ( t2 + n2 h2 )⎤⎦
                      4
                          L L ⎡τ                                      ⎡τ
                                                                  1
                          1 2 ⎣ 1  1    1 1 ⎦

    N1 −1 N 2 −1                       tk1 +1 tk2 +1
                                                                            d τ1d τ2
−   ∑ ∑ ϕ ( tk′ , tk′ ) ∫ ∫                                         r        p1                r         p2
                                                                                                            +
                                                             (           )             (             )
                          1       2
    k1 =0 k2 =0                         tk1 tk2        ⎡τ
                                                       ⎣ 1 −   t1 − n1h1   ⎤
                                                                           ⎦ ⎣  ⎡τ 2 −   t 2 + n2 h2   ⎤
                                                                                                       ⎦

                      1                                 ϕ ( τ1 , τ2 ) d τ1d τ2
                  +       ∫ ∫ − ( t + nr h )⎤ p                                    r          p2
                                                                                                   −
                                                                      ⎣ 2 − ( t2 + n2 h2 ) ⎤⎦
                      4
                          L L ⎡τ                                      ⎡τ
                                                                  1
                          1 2 ⎣ 1  1    1 1 ⎦




                                                               83