ВУЗ:
Составители:
Рубрика:
108
Опр. 9. Запись называется показательной формой
записи к. ч. (получается с использованием формулы Эйлера:
, которая доказывается в теории рядов).
ϕ
i
erz ⋅=
z
ϕϕ
ϕ
sincos ie
i
+=
Действия над к. ч., записанными в разных формах, обобщим
в табл. 8.
Таблица 8
Действия над к. ч.
Действия Алгебраи-
ческая
Тригонометрическая Показа-
тельная
),( yxz =
iy
+
)sin(cos
ϕ
ϕ
ir
+
,
где
22
yxr += ,
ϕ
определяется
по формуле (1)
x
ϕ
i
re
),( yxz −=
iy
x
−
)sin(cos
ϕ
ϕ
ir
−
ϕ
i
re
−
21
zz ±
)(
)(
21
21
yyi
xx
±+
+
±
21
zz ⋅
)(
)(
1221
2121
yxyxi
yyxx
++
+
−
))sin(
)(cos(
21
2121
ϕϕ
ϕ
ϕ
++
+
+
i
rr
)(
21
ϕϕ
+i
err
21
2
z
1
z
)0(
2
≠z
2
2
2
2
2112
2
2
2
2
2121
yx
yxyx
i
yx
yyxx
+
−
+
+
+
+
))sin(
)(cos(
21
2
1
ϕ−ϕ+
+ϕ−ϕ
i
r
r
21
)(
1
21
ϕϕ
−i
e
r
2
r
n
z , ∈n N
)sin(cos
ϕϕ
ninr
n
+
формула Муавра
ϕ
inn
er ⋅
Страницы
- « первая
- ‹ предыдущая
- …
- 106
- 107
- 108
- 109
- 110
- …
- следующая ›
- последняя »