Численные методы. Ч.2. Решение уравнений. Буслов В.А - 24 стр.

UptoLike

Составители: 

Рубрика: 

= λ
(
1 +
a +
b
λ
a +
2nb
λ
+ O
³
[λ
0
]
2n
´
)
= λ
½
1 + O
µ
1
n
¶¾
.
ρ
n
= λ{1 + O(1/n)} n
λ
(t λ)
2
= t
2
+ pt + q = 0 p = 2λ , q = λ
2
.
p q λ
x
n
= A
n
x
x
n+1
+ px
n
+ qx
n1
=< x, v
1
> {λ
n+1
1
+
n
1
+ qλ
n1
1
}
| {z }
=0
u
1
+
+ < x, v
2
> {(n + 1)λ
n
1
+ pnλ
n1
1
+ q(n 1)λ
n2
1
}u
1
+ < x, v
2
> {λ
n+1
1
+
n
1
+ qλ
n1
1
}
| {z }
=0
u
2
+ . . . =
=< x, v
2
> {
n2
(λ
2
+ + q)
| {z }
=0
+λ
n
qλ
n2
}u
1
+ . . . =< x, v
1
> λ
n2
(λ
2
q)
| {z }
=0
u
1
+ . . . ,
(λ
2
q) =
p
2
4
q = 0 x
n+1
+ px
n
+ qx
n1
= o(x
n+1
)
n x
k
λ x
n
i
= (A
n
x)
i
λ
n
x
i
y
n+1,n,n1
=
x
n+1,n,n1
λ
n+1
y
n+1
k
+ py
n
k
+ qy
n1
k
= O([λ
0
]
n+1
) .
k l
y
n
l
y
n+1
k
+ py
n
k
+ qy
n1
k
= O
³
[λ
0
]
n+1
´
0 y
n1
l
y
n
k
y
n+1
l
+ py
n
l
+ qy
n1
l
= O
³
[λ
0
]
n+1
´
0 y
n1
k
.
y
n1
l
y
n1
k
p =
y
n+1
k
y
n1
l
y
n+1
l
y
n1
k
y
n
k
y
n1
l
y
n
l
y
n1
k
+ O
³
[λ
0
]
n
+1
´
=
=
x
n+1
k
x
n1
l
x
n+1
l
x
n1
k
x
n
k
x
n1
l
x
n
l
x
n1
k
+ O
³
[λ
0
]
n+1
´
.
y
n
l
y
n
k
q =
x
n+1
k
x
n
l
x
n+1
l
x
n
k
x
n1
k
x
n
l
x
n1
l
x
n
k
+ O
³
[λ
0
]
n+1
´
.
p
2
/4 = q