ВУЗ:
Составители:
9
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРИ ПЛАНИРОВАНИИ 4
1
В результате предварительного анализа для математического моде-
лирования процессов при ортогональном планировании экспериментов на
четырех уровнях независимых переменных предложено универсальное
уравнение регрессии, в общем виде представляющее четырехчлен:
y = b
′
о
⋅
х
о
+ b
mn
· x
mn
+ b
mr
· x
mr
+ b
ms
· x
ms
, (11)
в котором
y – показатель (параметр) процесса; х
о
= +1;
х
mn
= x
n
m
+ v
m
; x
mr
=x
r
m
+a
m
· x
n
m
+c
m
; x
ms
=x
s
m
+ d
m
· x
r
m
+ e
m
· x
n
m
+ f
m
;
m
– порядковый номер фактора; x
m
– m-й фактор (независимое перемен-
ное);
n, r, s – изменяемые числа показателей степени факторов; v
m
, a
m
, c
m
,
d
m
, e
m
, f
m
– коэффициенты ортогонализации; b
′
o
, b
mn
, b
mr
, b
ms
– коэффициен-
ты регрессии.
Для каждой величины
m-го фактора x
ma
, x
mb
, x
mс
, x
md
определяются
соответственно параметры
y
a
, y
b
, y
c
,y
d
(рис. 2).
Рис.2. Зависимость показателя от четырех факторов
В табл.2 представлена матрица планирования однофакторных экспе-
риментов на четырех уровнях независимых переменных.
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРИ ПЛАНИРОВАНИИ 41 В результате предварительного анализа для математического моде- лирования процессов при ортогональном планировании экспериментов на четырех уровнях независимых переменных предложено универсальное уравнение регрессии, в общем виде представляющее четырехчлен: y = b′о ⋅ хо + bmn · xmn + bmr · xmr + bms · xms, (11) в котором y – показатель (параметр) процесса; хо = +1; хmn = xnm + vm; xmr=xrm+am · xnm+cm; xms=xsm + dm · xrm + em · xnm + fm; m – порядковый номер фактора; xm – m-й фактор (независимое перемен- ное); n, r, s – изменяемые числа показателей степени факторов; vm, am, cm, dm, em, fm – коэффициенты ортогонализации; b′o, bmn, bmr, bms – коэффициен- ты регрессии. Для каждой величины m-го фактора xma, xmb, xmс, xmd определяются соответственно параметры ya, yb, yc,yd (рис. 2). Рис.2. Зависимость показателя от четырех факторов В табл.2 представлена матрица планирования однофакторных экспе- риментов на четырех уровнях независимых переменных. 9
Страницы
- « первая
- ‹ предыдущая
- …
- 7
- 8
- 9
- 10
- 11
- …
- следующая ›
- последняя »