ВУЗ:
Составители:
36
a
1n
= d
′
o
+ d
2n
⋅
x
2n
+ d
2r
⋅
x
2r
;
a
1r
= e
′
o
+ e
2n
⋅
x
2n
+ e
2r
⋅
x
2r
.
После подстановки, перемножений и замены коэффициентов полу-
чается следующий полином для плана 3
2
(табл. 16):
y = b
′
o
⋅
x
o
+ b
1n
⋅
x
1n
+ b
2n
⋅
x
2n
+ b
1n,2n
⋅
x
1n
⋅
x
2n
+ b
1r
⋅
x
1r
+
+ b
2r
⋅
x
2r
+ b
1n,2r
⋅
x
1n
⋅
x
2r
+ b
2n,1r
⋅
x
2n
⋅
x
1r
+ b
1r,2r
⋅
x
1r
⋅
x
2r
(28)
В уравнении регрессии (28) y - показатель (параметр) процесса;
x
o
= + 1; x
1n
=x
n
1
+ v
1
;
x
1r
= x
r
1
+ a
1
⋅
x
n
1
+ c
1
;
x
2n
=x
n
2
+ v
2
;
x
2r
= x
r
2
+ a
2
⋅
x
n
2
+ c
2
;
x
1
, x
2
-1, 2-й факторы (независимые переменные); n, r,-
изменяемые числа показателей степени факторов;
v
1
, a
1
, c
1
- коэффициенты
ортогонации, определяемые при трех уровнях 1-го фактора,
m = 1 по фор-
мулам (19)-(21);
v
2
,a
2
, c
2
- коэффициенты ортогонализации, определяемые при трех
уровнях 2-го фактора,
m=2 по формулам (19)-(21);
b
0
′
, b
1n
, b
2n
, b
1n,2n
, b
1r
, b
2r
, b
1n,2r
, b
2n,1r
, b
1r,2r
, - коэффициенты регре-
сии. Для уровней
a, b, e факторы имеют следующие обозначения: x
1a
, x
1b
,
x
1e
, x
2a
, x
2b
, x
2e
.
В связи с ортогональным планированием все коэффициенты регрес-
сии и дисперсии в их определении рассчитываются независимо друг от
друга. Формулы для расчета коэффициентов регресcии уравнения (28)
имеют следующий вид:
;
N
y
x
yx
b
N
u
u
N
u
u,o
u
N
u
u,o
'
∑
∑
∑
=
=
=
=
⋅
=
1
1
2
1
0
;
x
yx
b
N
u
u,n
u
N
u
u,n
n
∑
∑
=
=
⋅
=
1
2
1
1
1
1
;
x
yx
b
N
u
u,n
u
N
u
u,n
n
∑
∑
=
=
⋅
=
1
2
2
1
2
2
;
)xx(
yxx
b
N
u
u,n
u,n
uu,n
N
u
u,n
n,n
∑
∑
=
=
⋅
⋅⋅
=
1
2
2
1
2
1
1
21
;
x
yx
b
N
u
u,r
u
N
u
u,r
r
∑
∑
=
=
⋅
=
1
2
1
1
1
1
;
x
yx
b
N
u
u,r
u
N
u
u,r
r
∑
∑
=
=
⋅
=
1
2
2
1
2
2
a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r ; a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r . После подстановки, перемножений и замены коэффициентов полу- чается следующий полином для плана 32 (табл. 16): y = b′o ⋅ xo + b1n ⋅ x1n + b2n ⋅ x2n + b1n,2n ⋅ x1n ⋅ x2n + b1r ⋅ x1r + + b2r ⋅ x2r + b1n,2r ⋅ x1n ⋅ x2r + b2n,1r ⋅ x2n ⋅ x1r + b1r,2r ⋅ x1r ⋅ x2r (28) В уравнении регрессии (28) y - показатель (параметр) процесса; xo = + 1; x1n =xn1 + v1 ; x1r = xr1 + a1⋅ xn1 + c1; x2n =xn2 + v2 ; x2r = xr2 + a2⋅ xn2 + c2; x1, x2 -1, 2-й факторы (независимые переменные); n, r,- изменяемые числа показателей степени факторов; v1, a1, c1 - коэффициенты ортогонации, определяемые при трех уровнях 1-го фактора, m = 1 по фор- мулам (19)-(21); v2,a2, c2 - коэффициенты ортогонализации, определяемые при трех уровнях 2-го фактора, m=2 по формулам (19)-(21); b0′, b1n, b2n, b1n,2n, b1r, b2r, b1n,2r, b2n,1r, b1r,2r, - коэффициенты регре- сии. Для уровней a, b, e факторы имеют следующие обозначения: x1a, x1b, x1e, x2a, x2b, x2e. В связи с ортогональным планированием все коэффициенты регрес- сии и дисперсии в их определении рассчитываются независимо друг от друга. Формулы для расчета коэффициентов регресcии уравнения (28) имеют следующий вид: N N N ∑ xo ,u ⋅ yu ∑ yu ∑ x1n ,u ⋅ yu u =1 u =1 u =1 b0' = N = ; b1n = N ; N ∑ xo2,u ∑ x12n ,u u =1 u =1 N N ∑ x 2n ,u ⋅ y u ∑ x1n ,u ⋅ x2n ,u ⋅ yu u =1 u =1 b2 n = N ; b1n ,2 n = N ; ∑ x 22n ,u ∑ ( x1n ,u ⋅ x2n ,u ) 2 u =1 u =1 N N ∑ x1r ,u ⋅ y u ∑ x2r ,u ⋅ yu u =1 u =1 b1r = N ; b2 r = N ; ∑ x12r ,u ∑ x 22r ,u u =1 u =1 36
Страницы
- « первая
- ‹ предыдущая
- …
- 34
- 35
- 36
- 37
- 38
- …
- следующая ›
- последняя »