Составители:
36
y
0
0
2
4
1
0
1
t t
– а – – b –
Рис.7.2. Колебательные переходные процессы
в замкнутых системах: устойчивой (a) и неустойчивой (б).
Известны следующие способы анализа систем на устойчивость:
1) Непосредственное решение уравнений динамики систем и по-
строение графика переходного процесса. Этот путь сложен, осо-
бенно при наличии чистого запаздывания.
2) Применение специальных критериев устойчивости, позволяющих
обойти трудности математического характера.
3) Компьютерное моделирование переходных процессов при за-
данных значениях параметров объектов и регуляторов (в том чис-
ле, с использованием упомянутой авторской программы №2).
Разработан ряд критериев устойчивости, из которых универ-
сальным, пригодным для любых систем, включая системы с чистым
запаздыванием, является критерий Найквиста – Михайлова. Для
этого критерия характерен частотный подход к проблеме устойчи-
вости замкнутых систем. При этом непосредственному исследова-
нию подвергается разомкнутая, хотя бы мысленно, система, а по-
полученным результатам судят о поведении той же системы в
замкнутом состоянии.
Пусть рассматривается разомкнутая система (рис.7.1,а), на
вход которой поданы синусоидальные колебания
sin ,
a
x
xt
=
⋅ ω
(7.1)
Страницы
- « первая
- ‹ предыдущая
- …
- 34
- 35
- 36
- 37
- 38
- …
- следующая ›
- последняя »
