Дифференциальное исчисление. - 34 стр.

UptoLike

Рубрика: 

34 §6. òÁÓËÒÙÔÉÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ. ðÒÁ×ÉÌÁ ìÏÐÉÔÁÌÑ
ðÒÉÍÅÒ 14. îÁÊÔÉ lim
x0
1 + x
2
1
e
x
1x
.
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ 1
. ôÁË ËÁË
1 + x
2
1
e
x
1x
= e
ln(1+x
2
)
e
x
1x
,
ÔÏ × ÐÏËÁÚÁÔÅÌÅ ÓÔÅÐÅÎÉ ÐÏÌÕÞÅÎÁ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
0
0
. ðÒÉÍÅÎÑÑ ÐÅÒ-
×ÏÅ ÐÒÁ×ÉÌÏ ìÏÐÉÔÁÌÑ, ÐÏÌÕÞÁÅÍ
lim
x0
ln(1 + x
2
)
e
x
1 x
= lim
x0
2x/(1 + x
2
)
e
x
1
=
= lim
x0
2x
(e
x
1)(1 + x
2
)
= lim
x0
2
e
x
(1 + x
2
) + (e
x
1)2x
=
2
1
= 2.
óÌÅÄÏ×ÁÔÅÌØÎÏ,
lim
x0
1 + x
2
1
e
x
1x
= e
lim
x0
ln(1+x
2
)
e
x
1x
= e
2
.
ðÒÉÍÅÒ 15. îÁÊÔÉ lim
x
π
2
(tg x)
2 cos x
.
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
0
. ôÁË ËÁË
(tg x)
2 cos x
= e
2 cos x ln tg x
= e
2 ln tg x
1/(cos x)
,
ÔÏ × ÐÏËÁÚÁÔÅÌÅ ÓÔÅÐÅÎÉ ÐÏÌÕÞÅÎÁ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
. ðÒÉÍÅÎÑÑ ×ÔÏ-
ÒÏÅ ÐÒÁ×ÉÌÏ ìÏÐÉÔÁÌÑ, ÉÍÅÅÍ
lim
x
π
2
2 ln tg x
1/(cos x)
= 2 lim
x
π
2
ln tg x
1/(cos x)
= 2 lim
x
π
2
1
tg x
·
1
cos
2
x
1
cos
2
x
· (sin x)
=
= 2 lim
x
π
2
sin x
tg x
= 2 lim
x
π
2
cos x = 0.
óÌÅÄÏ×ÁÔÅÌØÎÏ,
lim
x
π
2
(tg x)
2 cos x
= e
lim
x
π
2
2 cos x ln tg x
= e
0
= 1.
÷ ÓÌÅÄÕÀÝÅÍ ÐÒÉÍÅÒÅ ÐÅÒÅÊÄ¾Í Ë ÄÒÕÇÏÊ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ Ó ÐÏÍÏÝØÀ
ÏÐÅÒÁÃÉÉ ÌÏÇÁÒÉÆÍÉÒÏ×ÁÎÉÑ.
ðÒÉÍÅÒ 16. îÁÊÔÉ ÐÒÅÄÅÌ lim
x0
1
x
sin x
.
òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
0
. ðÏÌÏÖÉÍ y(x) =
1
x
sin x
É
ÐÒÏÌÏÇÁÒÉÆÍÉÒÕÅÍ ÏÂÅ ÞÁÓÔÉ ÐÏÌÕÞÅÎÎÏÇÏ ÒÁ×ÅÎÓÔ×Á:
ln y(x) = ln
1
x
sin x
= sin x ln
1
x
= sin x ln x.
34                    §6. òÁÓËÒÙÔÉÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ. ðÒÁ×ÉÌÁ ìÏÐÉÔÁÌÑ
                                                   1
     ðÒÉÍÅÒ 14. îÁÊÔÉ lim 1 + x2
                                              ex −1−x
                                                         .
                            x→0
     òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ 1∞ . ôÁË ËÁË
                                1          ln(1+x2 )
                         1 + x2 ex −1−x = e ex −1−x ,
ÔÏ × ÐÏËÁÚÁÔÅÌÅ ÓÔÅÐÅÎÉ ÐÏÌÕÞÅÎÁ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ 00 . ðÒÉÍÅÎÑÑ ÐÅÒ-
×ÏÅ ÐÒÁ×ÉÌÏ ìÏÐÉÔÁÌÑ, ÐÏÌÕÞÁÅÍ
     ln(1 + x2)       2x/(1 + x2)
 lim            = lim             =
 x→0 ex − 1 − x   x→0   ex − 1
                          2x                            2              2
              = lim x                = lim                           =   = 2.
                x→0 (e − 1)(1 + x2 )   x→0 ex (1 + x2 ) + (ex − 1)2x   1
óÌÅÄÏ×ÁÔÅÌØÎÏ,
                                               1                 ln(1+x2 )
                                     2                       lim
                                                                             = e2 .
                                                                   x
                                          ex −1−x
                        lim 1 + x                    =e      x→0 e −1−x
                       x→0
     ðÒÉÍÅÒ 15. îÁÊÔÉ limπ (tg x)2 cos x .
                            x→ 2
     òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ ∞0. ôÁË ËÁË
                                                                        2 ln tg x
                         (tg x)2 cos x = e2 cos x ln tg x = e 1/(cos x) ,
                                                                                      ∞
ÔÏ × ÐÏËÁÚÁÔÅÌÅ ÓÔÅÐÅÎÉ ÐÏÌÕÞÅÎÁ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ                                ∞
                                                                                        .   ðÒÉÍÅÎÑÑ ×ÔÏ-
ÒÏÅ ÐÒÁ×ÉÌÏ ìÏÐÉÔÁÌÑ, ÉÍÅÅÍ
                                                   1      1
        2 ln tg x           ln tg x              tg x · cos2 x
 lim              = 2 limπ           = 2 limπ                      =
 x→ π2 1/(cos x)      x→ 2 1/(cos x)     x→ 2 − 12 · (− sin x)
                                               cos x
                                                             sin x
                                                 = 2 limπ          = 2 limπ cos x = 0.
                                                       x→ 2 tg x       x→ 2

óÌÅÄÏ×ÁÔÅÌØÎÏ,
                                                limπ 2 cos x ln tg x
                     limπ (tg x)2 cos x = ex→ 2                         = e0 = 1.
                     x→ 2

   ÷ ÓÌÅÄÕÀÝÅÍ ÐÒÉÍÅÒÅ ÐÅÒÅÊÄ¾Í Ë ÄÒÕÇÏÊ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÉ Ó ÐÏÍÏÝØÀ
ÏÐÅÒÁÃÉÉ ÌÏÇÁÒÉÆÍÉÒÏ×ÁÎÉÑ.
                                     sin x
   ðÒÉÍÅÒ 16. îÁÊÔÉ ÐÒÅÄÅÌ lim x1           .
                              x→0
                                                               sin x
   òÅÛÅÎÉÅ. éÍÅÅÍ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ ∞0. ðÏÌÏÖÉÍ y(x) = x1         É
ÐÒÏÌÏÇÁÒÉÆÍÉÒÕÅÍ ÏÂÅ ÞÁÓÔÉ ÐÏÌÕÞÅÎÎÏÇÏ ÒÁ×ÅÎÓÔ×Á:
                            sin x
                            1                 1
              ln y(x) = ln          = sin x ln = − sin x ln x.
                            x                 x