Введение в теорию Галуа. Ермолаев Ю.Б. - 22 стр.

UptoLike

Составители: 

Рубрика: 

K(α
1
, ..., α
n
)
D(f) = a
2n2
0
Y
ni>j1
(α
i
α
j
)
2
f
o
D(f) = 0 f(x)
o
D(f) K D(f) f
D(f) = (1)
n(n1)/2
a
1
0
∆(f, f
0
) f
0
f ∆(f, f
0
) f f
0
∆(f, f
0
) =
a
0
a
1
. . . a
n1
a
n
0 . . . 0
0 a
0
a
1
. . . a
n1
a
n
. . . 0
. . . . . . . .
0 . . . 0 a
0
a
1
. . . a
n1
a
n
na
0
(n 1)a
1
. . . a
n1
0 0 . . . 0
0 na
0
(n 1)a
1
. . . a
n1
0 . . . 0
. . . . . . . .
0 0 . . . 0 na
0
(n 1)a
1
. . . a
n1
.
W (x
1
, ..., x
n
)
W (x
1
, ..., x
n
) =
1 1 . . . 1
x
1
x
2
. . . x
n
x
2
1
x
2
2
. . . x
2
n
. . . . . . . .
x
n1
1
x
n1
2
. . . x
n1
n
.
W = det W(x
1
, ..., x
n
) =
Y
ni>j1
(α
i
α
j
).
W
2
= det (W (x
1
, ..., x
n
)W (x
1
, ..., x
n
)
t
) =
s
0
s
1
s
2
. . . s
n1
s
1
s
2
s
3
. . . s
n
s
2
s
3
s
4
. . . s
n+1
. . . . .
s
n1
s
n
s
n+1
. . . s
2n2
,
s
0
= n s
k
= x
k
1
+ x
k
2
+ ··· + x
k
n
(k 1)
W
0
= det W(α
1
, ..., α
n
) D(f) D(f) = a
2n2
0
W
2
0
s
k
s
k1
σ
1
+ ··· + (1)
k1
s
1
σ
k1
+ (1)
k
kσ
k
= 0 (k < n),
s
k
s
k1
σ
1
+ ··· + (1)
n1
s
1
σ
n1
+ (1)
n
s
kn
σ
n
= 0 (k < n),
(2)
îáÿçàòåëüíî ðàçíûå). Íàïîìíèì, ÷òî ýëåìåíò ïîëÿ K(α1 , ..., αn )
                                                 Y
                           D(f ) = a2n−2
                                    0                  (αi − αj )2
                                            n≥i>j≥1

íàçûâàåòñÿ äèñêðèìèíàíòîì ìíîãî÷ëåíà f . Èç îïðåäåëåíèÿ äèñêðèìèíàí-
òà ñëåäóåò
     1o D(f ) = 0 ⇔ f (x) èìååò êðàòíûå êîðíè.
     2o D(f ) ∈ K (ò.ê. D(f ) ñèììåòðè÷åí îòíîñèòåëüíî êîðíåé f ).
     Íàïîìíèì òàêæå ñïîñîáû−1 âû÷èñëåíèÿ äèñêðèìèíàíòà:
     1) D(f ) = (−1)n(n−1)/2 a0 ∆(f, f 0 ), ãäå f 0  ïðîèçâîäíûé ìíîãî÷ëåí îò
f , à ∆(f, f 0 )  äåòåðìèíàíòíàÿ ôîðìà ðåçóëòàíòà ìíîãî÷ëåíîâ f è f 0 , ò.å.

                a0        a1           ...        an−1        an             0              ...       0
                0         a0           a1          ...       an−1           an              ...       0
                 .         .            .           .          .             .               .        .
                0        ...            0          a0         a1            ...            an−1      an
∆(f, f 0 ) =                                                                                               .
               na0    (n − 1)a1        ...        an−1         0             0              ...       0
                0        na0        (n − 1)a1      ...       an−1            0              ...       0
                 .         .            .           .          .             .               .        .
                0         0            ...          0        na0         (n − 1)a1          ...     an−1

   2) Ïóñòü W (x1 , ..., xn )  ìàòðèöà îïðåäåëèòåëÿ Âàíäåðìîíäà, ò.å.
                                                                               
                                            1       1        ...          1
                                      
                                          x1      x2        ...         xn     
                                                                                
                  W (x1 , ..., xn ) = 
                                          x21     x22       ...         x2n    .
                                                                                
                                          ..      ..         ..         ..     
                                          xn−1
                                           1      xn−1
                                                   2         ...        xn−1
                                                                         n

Áóäåì îáîçíà÷àòü îïðåäåëèòåëü Âàíäåðìîíäà ÷åðåç
                                                        Y
                     W = det W (x1 , ..., xn ) =                (αi − αj ).
                                                      n≥i>j≥1

Èìååì
                                                        s0         s1      s2        ...    sn−1
                                                        s1         s2      s3        ...      sn
 W 2 = det (W (x1 , ..., xn )W (x1 , ..., xn )t ) =     s2         s3      s4        ...    sn+1     ,
                                                         .          .       .         .        .
                                                       sn−1        sn    sn+1        ...    s2n−2

ãäå s0 = n è sk = xk1 + xk2 + · · · + xkn (k ≥ 1)  ñòåïåííûå ñóììû.2n−2Ïóñòü
W0 = det W (α1 , ..., αn ), òîãäà ïî îïðåäåëåíèþ D(f ) èìååì D(f ) = a0  W02 .
Çäåñü ñòåïåííûå ñóììû óäîáíî âû÷èñëÿòü ïî ôîðìóëàì Íüþòîíà:
     sk − sk−1 σ1 + · · · + (−1)k−1 s1 σk−1 + (−1)k kσk = 0 (k < n),
                                                                                                    (2)
     sk − sk−1 σ1 + · · · + (−1)n−1 s1 σn−1 + (−1)n sk−n σn = 0 (k < n),

                                             21