Введение в теорию Галуа. Ермолаев Ю.Б. - 28 стр.

UptoLike

Составители: 

Рубрика: 

C
4
[C
4
]
G(z) = z
6
A
1
z
5
+ A
2
z
4
A
3
z
3
+ A
4
z
2
A
5
z + A
6
,
A
k
= σ
k
(g
(1)
, g
(12)
, g
(13)
, g
(14)
, g
(23)
, g
(34)
), k = 1, ..., 6
g
a
, a = (1), (12), ...
A
1
= g
(1)
+ g
(12)
+ ··· + g
(34)
= 2(σ
1
σ
2
3σ
3
)
σ
i
x
1
, ...x
4
A
k
B
0
4
B
0
4
= {(1), (12)(34), (13)(24), (14)(23), (12), (34), (1324), (1423)}.
(13)(14) = (134) / B
0
4
B
0
4
F
0
= x
1
x
2
F = 4(x
1
x
2
+ x
3
x
4
) ψ =
x
1
x
2
+ x
3
x
4
B
0
4
ψ
(13)
= x
3
x
2
+ x
1
x
4
ψ
(14)
= x
4
x
2
+ x
3
x
1
ψ B
0
4
[B
0
4
]
R(z) = (z x
1
x
2
x
3
x
4
)(z x
1
x
3
x
2
x
4
)(z x
1
x
4
x
2
x
3
) =
z
3
σ
2
z
2
+ (σ
1
σ
3
4σ
4
)z (σ
2
1
σ
4
+ σ
2
3
4σ
2
σ
4
).
f(x) = x
4
+ a
1
x
3
+ a
2
x
2
+
a
3
x + a
4
a
1
= σ
1
, a
2
= σ
2
, a
3
= σ
3
, a
4
= σ
4
f(x)
R(z) = z
3
a
2
z
2
+ (a
1
a
3
4a
4
)z (a
2
1
a
4
+ a
2
3
4a
2
a
4
)
f(x) x
1
x
2
+ x
3
x
4
ϕ = (x
1
+ x
2
)(x
3
+ x
4
)
B
0
4
F
0
= x
1
x
3
F
(1)
0
=
F
(13)(24)
0
= F
0
, F
(12)(34)
0
= F
(14)(23)
0
= x
2
x
4
, F
(12)
0
= F
(1324)
0
= x
2
x
3
F
(34)
0
= F
(1423)
0
= x
1
x
4
F = 2(x
1
x
3
+ x
2
x
4
+ x
2
x
3
+
x
1
x
4
) = 2(x
1
+ x
2
)(x
3
+ x
4
) ϕ ϕ
(13)
=
(x
1
+ x
4
)(x
2
+ x
3
), ϕ
(14)
= (x
1
+ x
3
)(x
2
+ x
4
) B
0
4
[B
0
4
]
R
1
(z) = z
3
2σ
2
z
2
+ (σ
2
2
+ σ
1
σ
3
4σ
4
)z (σ
1
σ
2
σ
3
σ
2
1
σ
4
+ σ
2
3
).
f(x) = x
4
+ a
1
x
3
+ a
2
x
2
+ a
3
x + a
4
a
1
= σ
1
, a
2
=
σ
2
, a
3
= σ
3
, a
4
= σ
4
f(x)
R
1
(z) = z
3
2a
2
z
2
+ (a
2
2
+ a
1
a
3
4a
4
)z (a
1
a
2
a
3
a
2
1
a
4
+ a
2
3
)
äëÿ C4 . Ïîñìîòðèì, ÷òî èç ñåáÿ ïðåäñòàâëÿåò îïðåäåëÿþùèé ìíîãî÷ëåí
äëÿ [C4 ]. Ïî îïðåäåëåíèþ îí äîëæåí èìåòü âèä:
                G(z) = z 6 − A1 z 5 + A2 z 4 − A3 z 3 + A4 z 2 − A5 z + A6 ,

ãäå Ak = σk (g(1) , g(12) , g(13) , g(14) , g(23) , g(34) ), k = 1, ..., 6  ýëåìåíòàðíûå
ñèììåòðè÷åñêèå ôóíêöèè îò ga , a = (1), (12), ....  ÷àñòíîñòè,
                   A1 = g (1) + g (12) + · · · + g (34) = 2(σ1 σ2 − 3σ3 )

(çäåñü ïðàâîé ÷àñòè σi  ýëåìåíòàðíûå ñèììåòðè÷åñêèå îò x1 , ...x4 ). Îñòàëü-
íûå êîýôôèöèåíòû Ak èìåþò áîëåå ñëîæíûé âèä.
   Îïðåäåëÿþùèé ìíîãî÷ëåí ãðóïïû B40 .

        B40 = {(1), (12)(34), (13)(24), (14)(23), (12), (34), (1324), (1423)}.

Òàê êàê (13)(14) = (134) ∈/ B40 , òî (1),(13),(14) ñîñòàâëÿþò ïîëíûé íàáîð
ïðåäñòàâèòåëåé äëÿ B40 .
    Âîçüìåì ìîíîì F0 = x1 x2 , òîãäà F = 4(x1 x2 + x3 x4 ). Ïîýòîìó ψ =
x1 x2 + x3 x4  èíâàðèàíòíûé ìíîãî÷ëåí äëÿ B40 . Ïðîâåðèì èíâàðèàíòíîñòü
äëÿ ïðåäñòàâèòåëåé. Èìååì ψ(13) = x3 x2 + x1 x4 , ψ(14) = x4 x2 + x3 x1 . Òàêèì
îáðàçîì, ψ  îïðåäåëÿþùèé äëÿ B40 . Ïîñòðîèì îïðåäåëÿþùèé äëÿ [B40 ]:
        R(z) = (z − x1 x2 − x3 x4 )(z − x1 x3 − x2 x4 )(z − x1 x4 − x2 x3 ) =

                 z 3 − σ2 z 2 + (σ1 σ3 − 4σ4 )z − (σ12 σ4 + σ32 − 4σ2 σ4 ).
   Ïîëó÷åííûé òàêèì îáðàçîì ìíîãî÷ëåí äëÿ f (x) = x4 + a1 x3 + a2 x2 +
        ïðèíèìàåò âèä (ò.ê. a1 = −σ1 , a2 = σ2 , a3 = −σ3 , a4 = σ4 îò
a3 x + a4
êîðíåé )f (x)

            R(z) = z 3 − a2 z 2 + (a1 a3 − 4a4 )z − (a21 a4 + a23 − 4a2 a4 )

è íàçûâàåòñÿ êóáè÷åñêîé ðåçîëüâåíòîé f (x) (îòíîñèòåëüíî x1 x2 + x3 x4 ).
    Óáåäèìñÿ, ÷òî ìíîãî÷ëåí ϕ = (x1 + x2 )(x3 + x4 ) òîæå ÿâëÿåòñÿ îïðåäå-
ëÿþùèì äëÿ B40 . Ðàññìîòðèì ìîíîì F0 = x1 x3 . Îí èíâàðèàíòåí F0(1) =
                                                                       = x2 x3 è
  (13)(24)           (12)(34)     (14)(23)             (12)     (1324)
F0         = F0 , F0          = F0         = x2 x4 , F0     = F0
                  = x1 x4 . Ïîýòîìó â ýòîì ñëó÷àå F = 2(x1 x3 + x2 x4 + x2 x3 +
  (34)     (1423)
F0     = F0
x1 x4 ) = 2(x1 + x2 )(x3 + x4 ). Îòñþäà ϕ  èíâàðèàíòíûé, à ò.ê. ϕ(13) =
(x1 + x4 )(x2 + x3 ), ϕ(14) = (x1 + x3 )(x2 + x4 ), òî è îïðåäåëÿþùèé äëÿ B40 .
Ñîîòâåòñòâóþùèé îïðåäåëÿþùèé ìíîãî÷ëåí äëÿ [B40 ]:
       R1 (z) = z 3 − 2σ2 z 2 + (σ22 + σ1 σ3 − 4σ4 )z − (σ1 σ2 σ3 − σ12 σ4 + σ32 ).

    Äëÿ ìíîãî÷ëåíà f (x) = x4 + a1 x3 + a2 x2 + a3 x + a4 (ò.ê. a1 = −σ1 , a2 =
σ2 , a3 = −σ3 , a4 = σ4 îò êîðíåé f (x)) èìååì

        R1 (z) = z 3 − 2a2 z 2 + (a22 + a1 a3 − 4a4 )z − (a1 a2 a3 − a21 a4 + a23 )


                                            27