Теоретические основы электротехники. Анализ линейных электрических цепей при установившихся режимах работы. Евсеев М.Е. - 218 стр.

UptoLike

Составители: 

Рубрика: 

Если
, то удобно рассчитывать расстояние до любой точки линии от ее
конца При этом уравнения для тока и напряжения в любой точке линии на
любом
приобре
В
гипербол
известны ток и напряжение не в начале линии, а в ее конце
()
22
, IU
&&
.
расстоянии y от ее конца (после ряда простых преобразований)
тают следующий вид
:
ряде случаев уравнения длинной линии удобно выражать через
ические функции. Из курса математики известно
∗∗
, что
x
ee
xx
γ=
+
γγ
ch
2
и .sh
2
x
ee
xx
γ=
γ
γ
соотношения, выражения для тока и
месте x линии гиперболически синус и косинус.
ля этого в формулах (9.14) раскрываем скобки и группируем члены,
содер
Используя эти получаем
напряжения в любом через е
Д
жащие только
U
&
и только
I
&
. Тогда при счете расстояний от начала линии
получаем
;shch
1
xZIxUU γγ=
&&
1
B
.shch
1
1
x
Z
U
xII
B
γγ=
&
&&
(9.15)
Поступая аналогичным образом с формулами (9.14а) при счете
нца линии находим, чт
9.4.
Если в (9.15 а) положить y= , то получим уравнения, выражающие
ок и напряжение линии в начале через ток и напряжение в ее конце:
расстояний от ко о
Линия как симметричный четырехполюсник
l
т
Подробное преобразование имеется в [13], [5] .
∗∗
Справочник по математике, п.2.5.2.3.1 [9].
()()
()()
а) (9.14
.
2
1
2
2222
+=
γγ y
B
y
B
B
eZIUeZIU
Z
I
&&&&&
11
;
2
1
2
1
2222
++=
γγ
y
B
y
B
eZIUeZIUU
&&&&&
;shch
22
yZIyUU
B
γ+γ=
&&&
а) (9.15 .shch
2
2
y
U
yII γ+γ
&
&&
Z
B
=
()()
()()
(9.14)
.
2
1
2
11
1111
+=
γ+γ x
B
x
B
B
eZIUeZIU
Z
I
&&&&&
;
2
1
2
1
1111
++=
γ+γ
х
B
х
B
eZIUeZIUU
&&&&&
216