Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 105 стр.

UptoLike

Составители: 

p = 2 n 3
m(ω) =
1, ω [0, 1/2 1/2
n1
) [1/2 1/2
n
, 1/2),
b, ω [1/2 1/2
n1
, 1/2 1/2
n
),
0, ω [1/2, 1/2 1/2
n
) [1 1/2
n
, 1),
β, ω [1 1/2
n1
, 1 1/2
n
),
0 |b| < 1 |β| =
p
1 |b|
2
ϕ(x) =
1
2
n1
χ
[0,1)
(x/2
n1
)(1 +
2
n1
3
X
l=1
w
l
(x/2
n1
) + bw
2
n1
2
(x/2
n1
)
+ w
2
n1
1
(x/2
n1
) + βw
2
n
2
(x/2
n1
)). (17)
ϕ
E = [0, 1 1/2
n2
) [1 1/2
n1
, 1) [2 1/2
n2
, 2 1/2
n1
);
b 6= 0 E = [0, 1)
n = 3
p
  4.14. Ïóñòü p = 2, n ≥ 3. Ïîëîæèì
                      1, ω ∈ [0, 1/2 − 1/2n−1 ) ∪ [1/2 − 1/2n , 1/2),
                   
                   
                      b, ω ∈ [1/2 − 1/2n−1 , 1/2 − 1/2n ),
                   
          m(ω) =
                    0, ω ∈ [1/2, 1/2n−1
                                        − 1/2n ) ∪ [1 − 1/2n , 1),
                      β, ω ∈ [1 − 1/2 , 1 − 1/2n ),

ãäå 0 ≤ |b| < 1, |β| = 1 − |b|2 . Òîãäà èç (22) ïîëó÷àåì
                      p

                                             2n−1
                                              X−3
                1
      ϕ(x) =          χ[0,1) (x/2n−1 )(1 +          wl (x/2n−1 ) + bw2n−1 −2 (x/2n−1 )
               2n−1
                                              l=1

                        + w2n−1 −1 (x/2n−1 ) + βw2n −2 (x/2n−1 )).                       (17)
Äëÿ ýòîé ôóíêöèè ϕ ìîäèôèöèðîâàííîå óñëîâèå Êîýíà âûïîëíåíî íà ìíî-
æåñòâå

       E = [0, 1 − 1/2n−2 ) ∪ [1 − 1/2n−1 , 1) ∪ [2 − 1/2n−2 , 2 − 1/2n−1 );
åñëè b 6= 0, òî ìîæíî âûáðàòü òàêæå E = [0, 1).
  Îòìåòèì, ÷òî â ñëó÷àå n = 3 ôîðìóëû (16) è (17) ñîâïàäàþò.
   Äàëüíåéøèå ñâåäåíèÿ î p -àäè÷åñêèõ âåéâëåòàõ ñîäåðæàòñÿ â ðàáîòàõ [15],
[20], [25], [28], [29].




                                              105