ВУЗ:
Составители:
Рубрика:
P
0
f = P
−1
f + Q
−1
f, P
−1
f = 6
√
2ϕ
−1,0
, Q
−1
f = 2
√
2ψ
−1,0
.
f j = 1 s = 2
f(t) = 6
√
2ϕ
−1,0
(t) + 2
√
2ψ
−1,0
(t) + (ψ
00
(t) − ψ
01
(t))
f(t) = 6ϕ(t/2) + 2ψ(t/2) + (ψ(t) − ψ(t − 1)),
ϕ ψ
2
f ∈ L
2
(R)
P
j
f =
∞
X
s=1
Q
j−s
f, j ∈ Z. (16)
V
0
=
∞
M
j=1
W
−j
. (17)
L
2
(R) = V
0
M
M
j≥0
W
j
!
. (18)
ϕ = χ
[0,1)
V
0
ϕ = P
0
ϕ =
∞
X
j=1
Q
−j
ϕ =
n
X
j=1
Q
−j
ϕ + P
−n
ϕ, n ∈ N.
{a
0k
} f = ϕ
a
0k
=
1, k = 0,
0, k 6= 0.
j ≤ 0
a
j−1,k
=
a
j,0
/
√
2, k = 0,
0, k 6= 0.
n ∈ N
P
−n
ϕ = a
−n,0
ϕ
−n,0
=
1
√
2
n
ϕ
−n,0
,
Îòñþäà
√ √
P0 f = P−1 f + Q−1 f, ãäå P−1 f = 6 2ϕ−1,0 , Q−1 f = 2 2ψ−1,0 .
Òàêèì îáðàçîì, äëÿ äàííîé ôóíêöèè f ðàçëîæåíèå (15) â ñëó÷àå j = 1, s = 2
ïðèíèìàåò âèä
√ √
f (t) = 6 2ϕ−1,0 (t) + 2 2ψ−1,0 (t) + (ψ00 (t) − ψ01 (t))
èëè
f (t) = 6ϕ(t/2) + 2ψ(t/2) + (ψ(t) − ψ(t − 1)),
ãäå ϕ è ψ ìàñøòàáèðóþùàÿ ôóíêöèÿ è âåéâëåò Õààðà.
2
Èç (10) è (15) ñëåäóåò, ÷òî äëÿ âñåõ f ∈ L2 (R)
∞
X
Pj f = Qj−s f, j ∈ Z. (16)
s=1
Îòñþäà ïîëó÷àåì ðàâåíñòâî
∞
M
V0 = W−j . (17)
j=1
Çíà÷èò, íàðÿäó ñ (8) èìååò ìåñòî ðàçëîæåíèå
!
M M
L2 (R) = V0 Wj . (18)
j≥0
Ïðèìåð 2. Äëÿ ôóíêöèè ϕ = χ[0,1) èç ïðîñòðàíñòâà V0 â ñèëó (15) è (17)
èìååì ∞ n
X X
ϕ = P0 ϕ = Q−j ϕ = Q−j ϕ + P−n ϕ, n ∈ N.
j=1 j=1
Ñðåäè àïïðîêñèìèðóþùèõ êîýôôèöèåíòîâ {a0k } ôóíêöèè f = ϕ òîëüêî îäèí
îòëè÷åí îò íóëÿ:
1, k = 0,
a0k =
0, k 6= 0.
Îòñþäà è èç (13) äëÿ ëþáîãî öåëîãî j ≤ 0 íàõîäèì
√
aj,0 / 2, k = 0,
aj−1,k =
0, k 6= 0.
Ñëåäîâàòåëüíî, äëÿ âñåõ n ∈ N
n
1
P−n ϕ = a−n,0 ϕ−n,0 = √ ϕ−n,0 ,
2
52
Страницы
- « первая
- ‹ предыдущая
- …
- 50
- 51
- 52
- 53
- 54
- …
- следующая ›
- последняя »
