ВУЗ:
Составители:
Рубрика:
P
j
f
@
@
@
@
@R
-
P
j−1
f
Q
j−1
f
@
@
@
@
@R
-
P
j−2
f
Q
j−2
f
@
@
@
@
@R
-
. . . P
j−s
f
. . . Q
j−s
f
f
f(t) = 9χ
[0,1/2)
(t) + 7χ
[1/2,1)
(t) + 3χ
[1,3/2)
(t) + 5χ
[3/2,2)
(t), t ∈ R,
f(t) = 9 ϕ(2t) + 7 ϕ(2t − 1) + 3 ϕ(2t − 2) + 5 ϕ(2t − 3).
ϕ
1k
(t) =
√
2ϕ(2t − k),
f = P
1
f =
3
X
k=0
a
1k
ϕ
1k
,
a
10
= 9/
√
2, a
11
= 7/
√
2, a
12
= 3/
√
2, a
13
= 5/
√
2.
a
00
=
a
10
+ a
11
√
2
= 8, d
00
=
a
10
− a
11
√
2
= 1,
a
01
=
a
12
+ a
13
√
2
= 4, d
01
=
a
12
− a
13
√
2
= −1.
f = P
0
f + Q
0
f, P
0
f = 8ϕ
00
+ 4ϕ
01
, Q
0
f = ψ
00
− ψ
01
.
a
−1,0
=
a
00
+ a
01
√
2
= 6
√
2, d
−1,0
=
a
00
− a
01
√
2
= 2
√
2.
Ñõåìàòè÷íî:
- - -
Pj f Pj−1 f Pj−2 f . . . Pj−s f
@ @ @
@ @ @
@ @ @
@ @ @
R
@ R
@ R
@
Qj−1 f Qj−2 f . . . Qj−s f
Ðèñ. 1
Ïðèìåð 1. Ôóíêöèÿ f , çàäàííàÿ ðàâåíñòâîì
f (t) = 9χ[0,1/2) (t) + 7χ[1/2,1) (t) + 3χ[1,3/2) (t) + 5χ[3/2,2) (t), t ∈ R,
âûðàæàåòñÿ ÷åðåç ìàñøòàáèðóþùóþ ôóíêöèþ Õààðà ïî ôîðìóëå
f (t) = 9 ϕ(2t) + 7 ϕ(2t − 1) + 3 ϕ(2t − 2) + 5 ϕ(2t − 3).
√
Ïîñêîëüêó ϕ1k (t) = 2ϕ(2t − k), òî
3
X
f = P1 f = a1k ϕ1k ,
k=0
ãäå √ √ √ √
a10 = 9/ 2, a11 = 7/ 2, a12 = 3/ 2, a13 = 5/ 2.
Ïîëüçóÿñü ôîðìóëàìè (13), íàõîäèì
a10 + a11 a10 − a11
a00 = √ = 8, d00 = √ = 1,
2 2
a12 + a13 a12 − a13
a01 = √ = 4, d01 = √ = −1.
2 2
Çíà÷èò,
f = P0 f + Q0 f, ãäå P0 f = 8ϕ00 + 4ϕ01 , Q0 f = ψ00 − ψ01 .
Äàëåå, ïîâòîðíî ïðèìåíÿÿ (13), ïîëó÷àåì
a00 + a01 √ a00 − a01 √
a−1,0 = √ = 6 2, d−1,0 = √ = 2 2.
2 2
51
Страницы
- « первая
- ‹ предыдущая
- …
- 49
- 50
- 51
- 52
- 53
- …
- следующая ›
- последняя »
