Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 53 стр.

UptoLike

Составители: 

ϕ
n,0
(t) = 2
n/2
ϕ(2
n
t) =
2
n/2
, t [0, 2
n
),
0, t R \ [0, 2
n
),
L
2
ϕ
P
n
j=1
Q
j
ϕ
kP
n
ϕk =
1
2
n
2
n
n
2
f(t) = x
1
ϕ
n0
(t) + x
2
ϕ
n1
(t) + ··· + x
2
n
ϕ
n,2
n
1
(t), (19)
x
1
, x
2
, . . . , x
2
n
P
n
f = f a
n,k1
= x
k
, k = 1, 2, . . . , 2
n
. (20)
n
f m
a
j1,k
=
a
j,2k
+ a
j,2k+1
2
, d
j1,k
=
a
j,2k
a
j,2k+1
2
, j = n, n 1, . . . , m + 1.
(21)
0 m n 1 a
n,k1
f = P
m
f +
n1
X
j=m
Q
j
f =
2
m
1
X
k=0
a
mk
ϕ
mk
+
n1
X
j=m
2
j
1
X
k=0
d
jk
ψ
jk
. (22)
n
a
j,2k
=
a
j1,k
+ d
j1,k
2
, a
j,2k+1
=
a
j1,k
d
j1,k
2
, j = m + 1, m + 2, . . . , n.
(23)
n m = 0
a
0,0
d
j,k
0 j n 1, 0 k 2
j
1
a
n,k1
f
n m > 1
P
m
f =
2
m
1
X
k=0
a
m, k
ϕ
m, k
(24)
ãäå                                                     
                                 −n/2  2−n/2 , t ∈ [0, 2n ),
                                           −n
             ϕ−n,0 (t) = 2 ϕ(2 t) =
                                        0, t ∈ R \ [0, 2n ),
                                                             Pn
Òàêèì îáðàçîì, L2 -íîðìà ïîãðåøíîñòè àïïðîêñèìàöèè ϕ ≈ j=1 Q−j ϕ ñîâ-
ïàäàåò ñ âåëè÷èíîé                   n
                                       1
                           kP−n ϕk = √
                                        2
è óáûâàåò ê íóëþ ñî ñêîðîñòüþ ãåîìåòðè÷åñêîé ïðîãðåññèè, â òî âðåìÿ êàê
íîñèòåëü ýòîé ïîãðåøíîñòè èìååò äëèíó 2n è íåîãðàíè÷åííî óâåëè÷èâàåòñÿ
ïðè n → ∞.
                                                                 2
   Ïðè êîäèðîâàíèè ñèãíàëîâ àïïðîêñèìèðóþò ñòóïåí÷àòûå ôóíêöèè âèäà
                  f (t) = x1 ϕn0 (t) + x2 ϕn1 (t) + · · · + x2n ϕn,2n −1 (t),                    (19)
ãäå x1 , x2 , . . . , x2n  çàäàííûé íàáîð ÷èñåë. Äëÿ êàæäîé òàêîé ôóíêöèè èìååì
                    Pn f = f       è     an,k−1 = xk ,        k = 1, 2, . . . , 2n .             (20)
Òàêèì îáðàçîì, íàòóðàëüíîå ÷èñëî n âûáèðàåòñÿ â êà÷åñòâå íà÷àëüíîãî óðîâ-
íÿ àïïðîêñèìàöèè ôóíêöèè f . Ïåðåõîä ê m-ìó óðîâíþ îñóùåñòâëÿåòñÿ äèñ-
êðåòíûì ïðåîáðàçîâàíèåì Õààðà:
             aj,2k + aj,2k+1                    aj,2k − aj,2k+1
  aj−1,k =         √         ,     dj−1,k =           √         ,       j = n, n − 1, . . . , m + 1.
                     2                                  2
                                                                 (21)
ãäå 0 ≤ m ≤ n − 1 è èñõîäíûå êîýôôèöèåíòû an,k−1 îïðåäåëÿþòñÿ ïî ôîð-
ìóëå (20). Âû÷èñëèâ êîýôôèöèåíòû ïî ôîðìóëàì (21), ïîëó÷èì ñëåäóþùåå
ðàçëîæåíèå
                                                 m                         j
                                 n−1
                                 X              2X −1                      −1
                                                                      n−1 2X
                                                                      X
                f = Pm f +             Qj f =           amk ϕmk +               djk ψjk .        (22)
                                 j=m             k=0                  j=m k=0

Îáðàòíûé ïåðåõîä ê óðîâíþ n îñóùåñòâëÿåòñÿ ïî ôîðìóëàì
           aj−1,k + dj−1,k                      aj−1,k − dj−1,k
 aj,2k =         √         ,      aj,2k+1 =           √         ,       j = m + 1, m + 2, . . . , n.
                   2                                    2
                                                                    (23)
   Åñëè ÷èñëî n íåâåëèêî, òî ïðèíèìàþò m = 0 è êîäèðóþò ôóíêöèþ (19)
ñ ïîìîùüþ êîýôôèöèåíòîâ a0,0 , dj,k , ãäå 0 ≤ j ≤ n − 1, 0 ≤ k ≤ 2j − 1.
Ôîðìóëû (23) ïîçâîëÿþò â ýòîì ñëó÷àå òî÷íî âîññòàíîâèòü âñå èñõîäíûå êî-
ýôôèöèåíòû an,k−1 è òåì ñàìûì ôóíêöèþ f .
    ñëó÷àå áîëüøîãî n âûáèðàþò m > 1 è êîýôôèöèåíòû ðàçëîæåíèÿ
                                                 m
                                                2X −1
                                       Pm f =           am, k ϕm, k                              (24)
                                                 k=0

                                                   53