Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 49 стр.

UptoLike

Составители: 

ϕ = χ
[0,1)
ϕ
ϕ
jk
(t) = 2
j/2
t I
(j)
k
ϕ
jk
(t) = 0 t R \ I
(j)
k
ϕ
jk
(t) = 2
j/2
χ
I
(j)
k
(t) ψ
jk
(t) = 2
j/2
(χ
I
(j+1)
2k
(t) χ
I
(j+1)
2k+1
(t))
t R
2
j/2
Z
R
ϕ
jk
(t) dt = 1, j, k Z.
j Z {ϕ
jk
|k Z }
L
2
(R) f L
2
(R)
a
jk
= (f, ϕ
jk
) = 2
j/2
Z
I
(j)
k
f(t) dt, k Z. (6)
{V
j
} {W
j
} L
2
(R)
V
j
:= clos
L
2
(R)
span {ϕ
jk
| k Z }, W
j
:= clos
L
2
(R)
span {ψ
jk
| k Z }, j Z.
P
j
: L
2
(R) V
j
Q
j
: L
2
(R) W
j
P
j
f =
X
kZ
a
jk
ϕ
jk
, Q
j
f =
X
kZ
d
jk
ψ
jk
, j Z, (7)
{a
jk
} {d
jk
} f {ϕ
jk
}
{ψ
jk
}
f L
2
(R)
f =
X
jZ
Q
j
f,
L
2
(R)
L
2
(R) =
M
jZ
W
j
. (8)
V
0
= {f L
2
(R) | f [k, k + 1)}
ãäå ϕ = χ[0,1) (ýòó ôóíêöèþ ϕ íàçûâàþò ìàñøòàáèðóþùåé ôóíêöèåé Õààðà).
                                                         (j)                               (j)
Ëåãêî âèäåòü, ÷òî ϕjk (t) = 2j/2 äëÿ t ∈ Ik                    è ϕjk (t) = 0 äëÿ t ∈ R \ Ik . Èç
îïðåäåëåíèé âèäíî, ÷òî

           ϕjk (t) = 2j/2 χI (j) (t) è ψjk (t) = 2j/2 (χI (j+1) (t) − χI (j+1) (t))
                             k                                        2k            2k+1


äëÿ âñåõ t ∈ R. Êðîìå òîãî,
                                  Z
                           2j/2         ϕjk (t) dt = 1,           j, k ∈ Z.
                                    R

   Ïðè êàæäîì ôèêñèðîâàííîì j ∈ Z ñèñòåìà {ϕjk | k ∈ Z } îðòîíîðìèðî-
âàíà â L2 (R). Êîýôôèöèåíòû Ôóðüå ôóíêöèè f ∈ L2 (R) ïî ýòîé ñèñòåìå
âû÷èñëÿþòñÿ ïî ôîðìóëå
                                                    Z
                                              j/2
                      ajk = (f, ϕjk ) = 2                   f (t) dt,      k ∈ Z.                (6)
                                                      (j)
                                                     Ik


  Ñåìåéñòâà çàìêíóòûõ ïîäïðîñòðàíñòâ {Vj } è {Wj } ïðîñòðàíñòâà L2 (R)
îïðåäåëèì ðàâåíñòâàìè

Vj := closL2 (R) span {ϕjk | k ∈ Z },        Wj := closL2 (R) span {ψjk | k ∈ Z },         j ∈ Z.

Îðòîãîíàëüíûå ïðîåêòîðû Pj : L2 (R) → Vj è Qj : L2 (R) → Wj äåéñòâóþò
ïî ôîðìóëàì
                           X                                X
                  Pj f =         ajk ϕjk ,   Qj f =               djk ψjk ,   j ∈ Z,             (7)
                           k∈Z                              k∈Z

ãäå {ajk } è {djk }  êîýôôèöèåíòû Ôóðüå ôóíêöèè f ïî ñèñòåìàì {ϕjk } è
{ψjk } ñîîòâåòñòâåííî (ñì. (3), (6)).
   Äëÿ ëþáîé f ∈ L2 (R) èç (4) è (7) èìååì
                                               X
                                          f=            Qj f,
                                               j∈Z

ãäå ñëàãàåìûå ïîïàðíî îðòîãîíàëüíû. Ñëåäîâàòåëüíî, èìååò ìåñòî ðàçëîæå-
íèå ïðîñòðàíñòâà L2 (R) â îðòîãîíàëüíóþ ïðÿìóþ ñóììó:
                                                    M
                                        L2 (R) =            Wj .                                 (8)
                                                     j∈Z

   Âèäíî òàêæå, ÷òî

           V0 = {f ∈ L2 (R) | f ïîñòîÿííà íà èíòåðâàëàõ [k, k + 1)}

                                                49