Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 48 стр.

UptoLike

Составители: 

I
(j)
k
I
(s)
l
= ψ
jk
(t) = 0 t I
(s)
l
ψ
sl
(t) = 0
t I
(j)
k
(ψ
jk
, ψ
sl
) =
Z
I
(j)
k
ψ
jk
(t)ψ
sl
(t) dt +
Z
I
(s)
l
ψ
jk
(t)ψ
sl
(t) dt = 0
j = s k 6= l
j < s I
(j)
k
I
(s)
l
6= I
(s)
l
I
(j)
k
I
(s)
l
ψ
jk
2
j/2
2
j/2
(ψ
jk
, ψ
sk
) = ±2
j/2
Z
I
(s)
l
ψ
sl
(t) dt = 0.
kψ
jk
k
2
=
Z
R
|ψ
jk
(t)|
2
dt = 2
j
Z
I
(j)
k
dt = 1,
{ψ
jk
} L
2
(R)
f L
2
(R) {ψ
jk
}
d
jk
= (f, ψ
jk
) = 2
j/2
Z
I
(j+1)
2k
f(t) dt
Z
I
(j+1)
2k+1
f(t) dt
!
. (3)
{ψ
jk
} L
2
(R)
f L
2
(R)
f =
X
j,kZ
d
jk
ψ
jk
(4)
kfk
2
=
X
j,kZ
kd
jk
k
2
,
E R χ
E
χ
E
(t) =
1, t E,
0, t R \ E.
j, k Z
ϕ
jk
(t) = 2
j/2
ϕ(2
j
t k), t R, (5)
         (j)      (s)                                                                                       (s)
  Åñëè Ik ∩ Il = ∅, òî èç (1) ñëåäóåò, ÷òî ψjk (t) = 0 äëÿ t ∈ Il                                                 è ψsl (t) = 0
         (j)
äëÿ t ∈ Ik . Ïîýòîìó
                                Z                                         Z
               (ψjk , ψsl ) =              ψjk (t)ψsl (t) dt +                      ψjk (t)ψsl (t) dt = 0
                                     (j)                                      (s)
                                  Ik                                       Il

(â ÷àñòíîñòè, ýòî áóäåò ïðè j = s, k 6= l).
                  (j)  (s)            (s)   (j)
   Ïóñòü j < s è Ik ∩Il 6= ∅. Òîãäà Il ⊂ Ik è, ñëåäîâàòåëüíî, íà èíòåðâàëå
 (s)
Il ôóíêöèÿ ψjk ïîñòîÿííà (ðàâíà 2j/2 èëè −2j/2 ). Çíà÷èò, â ýòîì ñëó÷àå
                                                                Z
                                                          j/2
                           (ψjk , ψsk ) = ± 2                             ψsl (t) dt = 0.
                                                                    (s)
                                                                  Il

Òàêèì îáðàçîì, ñîîòíîøåíèÿ (2) äîêàçàíû. Ïîñêîëüêó
                                           Z                                      Z
                                 2                          2                 j
                        kψjk k =                 | ψjk (t)| dt = 2                          dt = 1,
                                                                                      (j)
                                             R                                      Ik

òî ñèñòåìà Õààðà {ψjk } îðòîíîðìèðîâàíà â L2 (R).
  Êîýôôèöèåíòû Ôóðüå ôóíêöèè f ∈ L2 (R) ïî ñèñòåìå {ψjk } èìåþò âèä
                                                      Z                               Z                   !
                djk = (f, ψjk ) = 2j/2                            f (t) dt −                        f (t) dt .             (3)
                                                          (j+1)                             (j+1)
                                                      I2k                                I2k+1

Èçâåñòíî, ÷òî ñèñòåìà Õààðà {ψjk } ïîëíà â L2 (R). Ïîýòîìó äëÿ ëþáîé ôóíê-
öèè f ∈ L2 (R) èìååò ìåñòî ðàçëîæåíèå â ðÿä Ôóðüå  Õààðà:
                                                          X
                                                 f=               djk ψjk                                                  (4)
                                                      j,k∈Z

è âåðíî ðàâåíñòâî Ïàðñåâàëÿ:
                                                          X
                                                  2
                                            kf k =                  kdjk k2 ,
                                                          j,k∈Z

ãäå êîýôôèöèåíòû âû÷èñëÿþòñÿ ïî ôîðìóëå (3).
   Õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ ìíîæåñòâà E ⊂ R îáîçíà÷àåòñÿ χE è îïðå-
äåëÿåòñÿ ðàâåíñòâîì            
                                 1, t ∈ E,
                      χE (t) =
                                 0, t ∈ R \ E.
  Äëÿ ëþáûõ j, k ∈ Z ïîëîæèì

                                ϕjk (t) = 2j/2 ϕ(2j t − k),                         t ∈ R,                                 (5)

                                                           48