Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 86 стр.

UptoLike

Составители: 

A
q
B
q
q
x R x
j
{0, 1}
x
j
= [2
j
x](mod 2), j N. (3)
x
{x} =
X
j=1
x
j
2
j
x
n Z
+
x R
r
n
(x) = 1 2x
n+1
= (1)
x
n+1
,
x
j
µ R f
n
(n = 0, 1, . . . , N)
{f
n
| n = 0, 1, . . . , N}
I
n
R n = 0.1, . . . , N,
µ{x : f
n
(x) I
n
, n = 1, 2, . . . , N} =
N
Y
n=1
µ{x : f
n
(x) I
n
}.
{f
n
| n Z
+
}
N N {f
n
| n = 0, 1, . . . , N}
n Z
+
x R
θ
n
(x) =
1 r
n
(x)
2
, θ
n
(x) = x
n+1
,
x
j
{r
n
| n Z
+
} {θ
n
| n Z
+
}
{w
n
| n Z
+
}
w
0
(x) 1, w
n
(x) =
s1
Y
j=0
(r
0
(2
j
x))
n
j
, n N, x ,
n
j
n =
s1
X
j=0
n
j
2
j
, n
j
{0, 1}, n
s1
= 1.
ãäå Aq è Bq  ïîëîæèòåëüíûå êîíñòàíòû, çàâèñÿùèå òîëüêî îò q .
  Äëÿ ïðîèçâîëüíîãî x ∈ R ÷èñëà xj ∈ {0, 1} îïðåäåëèì ïî ôîðìóëå

                           xj = [2j x](mod 2),             j ∈ N.                           (3)
Ýòè ÷èñëà ÿâëÿþòñÿ öèôðàìè äâîè÷íîãî ðàçëîæåíèÿ äðîáíîé ÷àñòè ÷èñëà x:
                                                ∞
                                                X
                                    {x} =             xj 2−j
                                                j=1

(â ñëó÷àå äâîè÷íî-ðàöèîíàëüíîãî x ïîëó÷àåòñÿ ðàçëîæåíèå ñ êîíå÷íûì ÷èñ-
ëîì íåíóëåâûõ ñëàãàåìûõ).
  1.12. Äëÿ ëþáûõ n ∈ Z+ , x ∈ R èìååì
                          rn (x) = 1 − 2xn+1 = (−1)xn+1 ,
ãäå xj íàõîäÿòñÿ ïî ôîðìóëå (3).
   Ïóñòü µ  ìåðà Ëåáåãà íà R è fn (n = 0, 1, . . . , N )  âåùåñòâåííûå èç-
ìåðèìûå ôóíêöèè, îáëàñòè îïðåäåëåíèÿ êîòîðûõ ñîäåðæàò ∆. Ãîâîðÿò, ÷òî
{fn | n = 0, 1, . . . , N } ÿâëÿåòñÿ íàáîðîì íåçàâèñèìûõ ôóíêöèé, åñëè äëÿ ëþ-
áûõ èíòåðâàëîâ In ⊂ R, n = 0.1, . . . , N, ñïðàâåäëèâî ðàâåíñòâî
                                                           N
                                                           Y
    µ{x ∈ ∆ : fn (x) ∈ In , n = 1, 2, . . . , N } =              µ{x ∈ ∆ : fn (x) ∈ In }.
                                                           n=1

Ñèñòåìó {fn | n ∈ Z+ } íàçûâàþò ñèñòåìîé íåçàâèñèìûõ ôóíêöèé, åñëè äëÿ
ëþáîãî N ∈ N íàáîð {fn | n = 0, 1, . . . , N } åñòü íàáîð íåçàâèñèìûõ ôóíêöèé.
  Äëÿ n ∈ Z+ , x ∈ R ïîëîæèì
                                1 − rn (x)
                    θn (x) =               ,         ò.å. θn (x) = xn+1 ,
                                    2
ãäå xj íàõîäÿòñÿ ïî ôîðìóëå (3).
  1.13. Ñèñòåìû {rn | n ∈ Z+ } è {θn | n ∈ Z+ } ÿâëÿþòñÿ ñèñòåìàìè íåçàâè-
ñèìûõ ôóíêöèé.
  Cèñòåìà ôóíêöèé Óîëøà {wn | n ∈ Z+ } íà ∆ îïðåäåëÿåòñÿ ðàâåíñòâàìè
                                     s−1
                                     Y
          w0 (x) ≡ 1,       wn (x) =     (r0 (2j x))nj ,          n ∈ N,    x ∈ ∆,
                                          j=0

ãäå nj áåðóòñÿ èç äâîè÷íîãî ðàçëîæåíèÿ
                          s−1
                          X
                     n=         nj 2j ,   nj ∈ {0, 1},         ns−1 = 1.
                          j=0

                                                86