Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 87 стр.

UptoLike

Составители: 

w
n
(x) =
s1
Y
j=0
(r
j
(x))
n
j
= r
s1
(x)
s2
Y
j=0
(r
j
(x))
n
j
, n N, x ,
Z
1
0
w
n
(x)w
m
(x) dx = δ
n,m
, n, m Z
+
.
w
l
(x) 0 l 2
n
1
1, I
(n)
k
, 0 k
2
n
1 w
l
(x) = 1 x I
(n)
0
w
(n)
l,k
w
l
(x) I
(n)
k
w
(n)
l,k
:= w
l
(k2
n
) 0 l, k 2
n
1.
w
(0)
0,0
= 1, w
(1)
0,0
= w
(1)
1,0
= w
(1)
0,1
= 1, w
(1)
1,1
= 1.
n (w
(n)
l,k
)
2
n
1
X
i=0
w
(n)
i,l
w
(n)
i,k
=
2
n
1
X
j=0
w
(n)
l,j
w
(n)
k,j
= 2
n
δ
l,k
, 0 l, k 2
n
1.
w
(n)
2l,k
= w
(n)
2l+1,k
= w
(n1)
l,k
, w
(n)
2l,2
n
+k
= w
(n)
2l+1,2
n
+k
= w
(n1)
l,k
,
w
(n)
l,2k
= w
(n)
l,2k+1
= w
(n1)
l,k
, w
(n)
2
n
+l,2k
= w
(n)
2
n
+l,2k+1
= w
(n1)
l,k
.
(w
(n)
l,k
)
(w
(n1)
l,k
)
n = 1 n = 2
1 1
1 1
,
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
.
  1.14. Ôóíêöèè Óîëøà âûðàæàþòñÿ ÷åðåç ôóíêöèè Ðàäåìàõåðà ïî ôîðìó-
ëàì
                 s−1
                 Y                      s−2
                                        Y
        wn (x) =     (rj (x)) = rs−1 (x) (rj (x))nj ,
                             nj
                                                                                      n ∈ N,   x ∈ ∆,
                     j=0                                          j=0
è óäîâëåòâîðÿþò ñîîòíîøåíèÿì îðòîãîíàëüíîñòè
                           Z     1
                                     wn (x)wm (x) dx = δn,m ,                 n, m ∈ Z+ .
                            0

  1.15. Ôóíêöèè Óîëøà wl (x) ïðè 0 ≤ l ≤ 2n − 1 ïðèíèìàþò ïîñòîÿííûå
                                                                                                   (n)
çíà÷åíèÿ, ðàâíûå 1 èëè −1, íà êàæäîì èç äâîè÷íûõ èíòåðâàëîâ Ik , 0 ≤ k ≤
                                   (n)
2n − 1, ïðè÷åì wl (x) = 1 ïðè x ∈ I0 .
                                     (n)
  Îáîçíà÷èì ÷åðåç wl,k ïîñòîÿííîå çíà÷åíèå, êîòîðîå ïðèíèìàåò ôóíêöèÿ
                               (n)
wl (x) íà èíòåðâàëå Ik , ò.å.
                           (n)
                      wl,k := wl (k2−n ) äëÿ 0 ≤ l, k ≤ 2n − 1.
 ÷àñòíîñòè,
                     (0)                      (1)          (1)          (1)           (1)
                   w0,0 = 1,               w0,0 = w1,0 = w0,1 = 1,                w1,1 = −1.

  1.16. Äëÿ ëþáîãî íàòóðàëüíîãî n ìàòðèöà (wl,k
                                            (n)
                                                ) ÿâëÿåòñÿ ñèììåòðè÷íîé
è óäîâëåòâîðÿåò ñîîòíîøåíèÿì îðòîãîíàëüíîñòè
            n                               n
           2X −1                           2X −1
                     (n)       (n)                   (n)   (n)
                   wi,l wi,k =                     wl,j wk,j = 2n δl,k ,       0 ≤ l, k ≤ 2n − 1.
            i=0                            j=0

Ïðè ýòîì ñïðàâåäëèâû ðàâåíñòâà
            (n)            (n)                (n−1)              (n)            (n)            (n−1)
          w2l,k = w2l+1,k = wl,k                       ,    w2l,2n +k = −w2l+1,2n +k = wl,k            ,
            (n)            (n)                (n−1)              (n)            (n)            (n−1)
          wl,2k = wl,2k+1 = wl,k                       ,    w2n +l,2k = −w2n +l,2k+1 = wl,k            .
                                                                                (n)
  Îòñþäà âèäíî, ÷òî äëÿ ïîëó÷åíèÿ ìàòðèöû (wl,k ) ñëåäóåò êàæäóþ ñòðîêó
             (n−1)
ìàòðèöû (wl,k ) íàïèñàòü äâàæäû â âèäå äâóõ íîâûõ ñòðîê è äîïîëíèòü
ïîëó÷åííûå ñòðîêè, ïðèïèñûâàÿ ê ïåðâîé ñòðîêå ñïðàâà åùå îäèí ýêçåìïëÿð
ýòîé æå ñòðîêè, à êî âòîðîé ñòðîêå äîáàâëÿÿ ñïðàâà âñå ýëåìåíòû òîé æå
ñòðîêè ñ ïðîòèâîïîëîæíûì çíàêîì. Íàïðèìåð, äëÿ n = 1 è n = 2 ïîëó÷àþòñÿ
ìàòðèöû
                                                           1 1 1 1
                                                
                                                  
                                      1 1                 1 1 −1 −1 
                                                       ,              .
                                      1 −1                 1 −1 1 −1 
                                                           1 −1 −1 1
                                                                 87