Автоматизация управления в производственных системах. Федотов А.В. - 25 стр.

UptoLike

Составители: 

25
В матрице Карно выделены два
подкуба двухклеточный и четырехкле-
точный, которые соответствуют еди-
ничному логическому значению функ-
ции. Для четырехклеточного подкуба не
изменяет своего состояния переменная
B. Эта переменная образует первую
элементарную конъюнкцию. Для двух-
клеточного подкуба не изменяют своих
состояний переменные A и C, которые
образуют вторую элементарную конъ-
юнкцию. Объединив эти две элементар-
ные конъюнкции операцией дизъюнкции, получим минимальную дизъюнктивную
нормальную форму записи логической функции в следующем виде:
ACBY
.
Полученный результат существенно проще исходной логической формулы до
минимизации. Использование минимизированной функции позволяет упростить ре-
ализацию логического условия при проектировании цикловой системы управления,
как в случае аппаратной реализации, так и в случае программной реализации.
Опубликовано большое количество работ по методам минимизации логиче-
ских функций, однако их можно разделить на две группы:
1) методы, основанные на схеме минимизации, предложенной впервые В.
Куайном (W. Quine) и Дж. Мак-Класки (J. McClusqey) и содержащей две основные
операции: определение множества минимальных импликантов и отыскание за-
тем минимального числа их (импликанты - конъюнкции логических переменных,
реализующие хотя бы одно единичное состояние функции и имеющие такое чис-
ло переменных и таких переменных, что исключение хотя бы одной переменной
будет приводить к получению безразличного или запрещенного (нулевого) состо-
яния функции).
2) методы, основанные на схеме минимизации, предложенной М.А. Гаври-
ловым и В.М. Копыленко, в которой определяются обязательные переменные, ми-
нимальные и недостаточные наборы из обязательных переменных и производит-
ся доопределение недостаточных наборов.
При проектировании систем циклового управления различают случаи комби-
национных устройств управления и последовательностных устройств. В комбина-
ционных устройствах выходная логическая функция однозначно определяется ком-
бинацией входных переменных и не зависит от предшествующего состояния систе-
мы. Комбинационные устройства называют также однотактными.
Выходная логическая функция последовательностных (многотактных)
устройств определяется как комбинацией входных переменных, так и предшеству-
ющим состоянием системы. Такие устройства содержат элементы памяти для фик-
сации предшествующих состояний, например, переключаемые триггеры.
Рис. 2.11. Пример: а) таблица истинно-
сти и б) матрица Карно
                                                 В матрице Карно выделены два
                                           подкуба – двухклеточный и четырехкле-
                                           точный, которые соответствуют еди-
                                           ничному логическому значению функ-
                                           ции. Для четырехклеточного подкуба не
                                           изменяет своего состояния переменная
                                           B. Эта переменная образует первую
                                           элементарную конъюнкцию. Для двух-
                                           клеточного подкуба не изменяют своих
  Рис. 2.11. Пример: а) таблица истинно- состояний переменные A и C, которые
          сти и б) матрица Карно           образуют вторую элементарную конъ-
                                           юнкцию. Объединив эти две элементар-
ные конъюнкции операцией дизъюнкции, получим минимальную дизъюнктивную
нормальную форму записи логической функции в следующем виде:
       Y  B  C  A.
      Полученный результат существенно проще исходной логической формулы до
минимизации. Использование минимизированной функции позволяет упростить ре-
ализацию логического условия при проектировании цикловой системы управления,
как в случае аппаратной реализации, так и в случае программной реализации.
      Опубликовано большое количество работ по методам минимизации логиче-
ских функций, однако их можно разделить на две группы:
      1) методы, основанные на схеме минимизации, предложенной впервые В.
Куайном (W. Quine) и Дж. Мак-Класки (J. McClusqey) и содержащей две основные
операции: определение множества минимальных импликантов и отыскание за-
тем минимального числа их (импликанты - конъюнкции логических переменных,
реализующие хотя бы одно единичное состояние функции и имеющие такое чис-
ло переменных и таких переменных, что исключение хотя бы одной переменной
будет приводить к получению безразличного или запрещенного (нулевого) состо-
яния функции).
      2) методы, основанные на схеме минимизации, предложенной М.А. Гаври-
ловым и В.М. Копыленко, в которой определяются обязательные переменные, ми-
нимальные и недостаточные наборы из обязательных переменных и производит-
ся доопределение недостаточных наборов.
      При проектировании систем циклового управления различают случаи комби-
национных устройств управления и последовательностных устройств. В комбина-
ционных устройствах выходная логическая функция однозначно определяется ком-
бинацией входных переменных и не зависит от предшествующего состояния систе-
мы. Комбинационные устройства называют также однотактными.
      Выходная логическая функция последовательностных (многотактных)
устройств определяется как комбинацией входных переменных, так и предшеству-
ющим состоянием системы. Такие устройства содержат элементы памяти для фик-
сации предшествующих состояний, например, переключаемые триггеры.



                                      25