Функция нескольких переменных. - 12 стр.

UptoLike

Рубрика: 

12 §8. ðÒÏÉÚ×ÏÄÎÁÑ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ. çÒÁÄÉÅÎÔ
2. çÒÁÄÉÅÎÔ ÎÁÐÒÁ×ÌÅÎ × ÓÔÏÒÏÎÕ ×ÏÚÒÁÓÔÁÎÉÑ ÆÕÎËÃÉÉ ÐÏÌÑ.
3. íÏÄÕÌØ ÇÒÁÄÉÅÎÔÁ ÒÁ×ÅÎ ÎÁÉÂÏÌØÛÅÊ ÐÒÏÉÚ×ÏÄÎÏÊ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ ×
ÄÁÎÎÏÊ ÔÏÞËÅ ÐÏÌÑ.
üÔÉ Ó×ÏÊÓÔ×Á ÇÏ×ÏÒÑÔ Ï ÔÏÍ, ÞÔÏ ×ÅËÔÏÒ grad u ÕËÁÚÙ×ÁÅÔ ÎÁÐÒÁ×ÌÅÎÉÅ
É ×ÅÌÉÞÉÎÕ ÎÁÉÂÙÓÔÒÅÊÛÅÇÏ ÒÏÓÔÁ ÆÕÎËÃÉÉ u × ÄÁÎÎÏÊ ÔÏÞËÅ. ðÒÏÉÚ×ÏÄÎÁÑ
u
`
× ÎÁÐÒÁ×ÌÅÎÉÉ ÇÒÁÄÉÅÎÔÁ ÉÍÅÅÔ ÎÁÉÂÏÌØÛÅÅ ÚÎÁÞÅÎÉÅ, ÒÁ×ÎÏÅ
(
u
`
)
Ω ΥΓ.
= |grad u| =
s
(
u
x
)
2
+ (
u
y
)
2
+ (
u
z
)
2
.
ðÒÉÍÅÒ 1. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ u = x 2y + 3z.
òÅÛÅÎÉÅ. îÁÊÄ¾Í ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ:
u
x
= 1;
u
y
= 2;
u
z
= 3.
óÏÇÌÁÓÎÏ ÆÏÒÍÕÌÅ (5) ÉÍÅÅÍ:
grad u = 1 · i + (2) · j + 3 · k, ÉÌÉ grad u = (1, 2, 3).
ðÏ×ÅÒÈÎÏÓÔÑÍÉ ÕÒÏ×ÎÑ ÄÁÎÎÏÇÏ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ Ñ×ÌÑÀÔÓÑ ÐÌÏÓËÏÓÔÉ x
2y + 3z = c; ×ÅËÔÏÒ ÇÒÁÄÉÅÎÔ grad u = (1, 2, 3) ÅÓÔØ ÎÏÒÍÁÌØÎÙÊ ×ÅËÔÏÒ
ÐÌÏÓËÏÓÔÅÊ ÜÔÏÇÏ ÓÅÍÅÊÓÔ×Á.
ðÒÉÍÅÒ 2. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÆÕÎËÃÉÉ u = x
3
xy × ÔÏÞËÅ (1, 2) É ÐÒÏÉÚ-
×ÏÄÎÕÀ
u
a
× ÔÏÞËÅ M × ÎÁÐÒÁ×ÌÅÎÉÉ ×ÅËÔÏÒÁ a = 5i 3j.
òÅÛÅÎÉÅ. îÁÊÄ¾Í ÚÎÁÞÅÎÉÑ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ × ÔÏÞËÅ M:
u
x
|
M(1,2)
= (3x
2
y)|
x=1,y=2
= 1,
u
y
|
M(1,2)
= x|
x=1,y=2
= 1.
óÌÅÄÏ×ÁÔÅÌØÎÏ, ÐÏ ÆÏÒÍÕÌÅ (3)
(grad u)
M
= i j = {1, 1}.
÷ ÓÏÏÔ×ÅÔÓÔ×ÉÉ Ó ÆÏÒÍÕÌÏÊ (1) ÎÁÈÏÄÉÍ
u
a
. îÁÐÒÁ×ÌÑÀÝÉÅ ËÏÓÉÎÕÓÙ ×ÅË-
ÔÏÒÁ a = 5i 3j, |a| =
p
5
2
+ (3)
2
=
34 ÂÕÄÕÔ:
cos α =
5
34
, cos β =
3
34
.
ôÏÇÄÁ
u
a
= 1 ·
5
34
+ (1) · (
3
34
) =
8
34
.
12                            §8. ðÒÏÉÚ×ÏÄÎÁÑ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ. çÒÁÄÉÅÎÔ

   2. çÒÁÄÉÅÎÔ ÎÁÐÒÁ×ÌÅÎ × ÓÔÏÒÏÎÕ ×ÏÚÒÁÓÔÁÎÉÑ ÆÕÎËÃÉÉ ÐÏÌÑ.
   3. íÏÄÕÌØ ÇÒÁÄÉÅÎÔÁ ÒÁ×ÅÎ ÎÁÉÂÏÌØÛÅÊ ÐÒÏÉÚ×ÏÄÎÏÊ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ ×
ÄÁÎÎÏÊ ÔÏÞËÅ ÐÏÌÑ.
   üÔÉ Ó×ÏÊÓÔ×Á ÇÏ×ÏÒÑÔ Ï ÔÏÍ, ÞÔÏ ×ÅËÔÏÒ grad u ÕËÁÚÙ×ÁÅÔ ÎÁÐÒÁ×ÌÅÎÉÅ
É ×ÅÌÉÞÉÎÕ ÎÁÉÂÙÓÔÒÅÊÛÅÇÏ ÒÏÓÔÁ ÆÕÎËÃÉÉ u × ÄÁÎÎÏÊ ÔÏÞËÅ. ðÒÏÉÚ×ÏÄÎÁÑ
∂u
∂`
   × ÎÁÐÒÁ×ÌÅÎÉÉ ÇÒÁÄÉÅÎÔÁ ÉÍÅÅÔ ÎÁÉÂÏÌØÛÅÅ ÚÎÁÞÅÎÉÅ, ÒÁ×ÎÏÅ
                                   s
               ∂u                     ∂u     ∂u      ∂u
              ( )      = |grad u| = ( )2 + ( )2 + ( )2 .
               ∂` ΩΥΓ.                ∂x     ∂y      ∂z
   ðÒÉÍÅÒ 1. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ u = x − 2y + 3z.
   òÅÛÅÎÉÅ. îÁÊÄ¾Í ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ:
                          ∂u          ∂u          ∂u
                              = 1;       = −2;          = 3.
                          ∂x          ∂y          ∂z
óÏÇÌÁÓÎÏ ÆÏÒÍÕÌÅ (5) ÉÍÅÅÍ:
grad u = 1 · i + (−2) · j + 3 · k, ÉÌÉ grad u = (1, −2, 3).
   ðÏ×ÅÒÈÎÏÓÔÑÍÉ ÕÒÏ×ÎÑ ÄÁÎÎÏÇÏ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ Ñ×ÌÑÀÔÓÑ ÐÌÏÓËÏÓÔÉ x −
2y + 3z = c; ×ÅËÔÏÒ ÇÒÁÄÉÅÎÔ grad u = (1, −2, 3) ÅÓÔØ ÎÏÒÍÁÌØÎÙÊ ×ÅËÔÏÒ
ÐÌÏÓËÏÓÔÅÊ ÜÔÏÇÏ ÓÅÍÅÊÓÔ×Á.
   ðÒÉÍÅÒ 2. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÆÕÎËÃÉÉ u = x3 − xy × ÔÏÞËÅ (1, 2) É ÐÒÏÉÚ-
×ÏÄÎÕÀ ∂u
        ∂a × ÔÏÞËÅ M × ÎÁÐÒÁ×ÌÅÎÉÉ ×ÅËÔÏÒÁ a = 5i − 3j.
   òÅÛÅÎÉÅ. îÁÊÄ¾Í ÚÎÁÞÅÎÉÑ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ × ÔÏÞËÅ M :
       ∂u                                     ∂u
          |M (1,2) = (3x2 − y)|x=1,y=2 = 1,      |M (1,2) = −x|x=1,y=2 = −1.
       ∂x                                     ∂y
óÌÅÄÏ×ÁÔÅÌØÎÏ, ÐÏ ÆÏÒÍÕÌÅ (3)
                       (grad u)M = i − j = {1, −1}.
                                        ∂u
÷ ÓÏÏÔ×ÅÔÓÔ×ÉÉ Ó ÆÏÒÍÕÌÏÊ
                        p (1) ÎÁÈÏÄÉÍ√∂a . îÁÐÒÁ×ÌÑÀÝÉÅ ËÏÓÉÎÕÓÙ ×ÅË-
ÔÏÒÁ a = 5i − 3j, |a| = 52 + (−3)2 = 34 ÂÕÄÕÔ:
                                 5            −3
                       cos α = √ , cos β = √ .
                                 34            34
ôÏÇÄÁ
                  ∂u         5           −3       8
                      = 1 · √ + (−1) · ( √ ) = √ .
                  ∂a          34           34     34


Страницы