ВУЗ:
Рубрика:
12 §8. ðÒÏÉÚ×ÏÄÎÁÑ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ. çÒÁÄÉÅÎÔ
2. çÒÁÄÉÅÎÔ ÎÁÐÒÁ×ÌÅÎ × ÓÔÏÒÏÎÕ ×ÏÚÒÁÓÔÁÎÉÑ ÆÕÎËÃÉÉ ÐÏÌÑ.
3. íÏÄÕÌØ ÇÒÁÄÉÅÎÔÁ ÒÁ×ÅÎ ÎÁÉÂÏÌØÛÅÊ ÐÒÏÉÚ×ÏÄÎÏÊ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ ×
ÄÁÎÎÏÊ ÔÏÞËÅ ÐÏÌÑ.
üÔÉ Ó×ÏÊÓÔ×Á ÇÏ×ÏÒÑÔ Ï ÔÏÍ, ÞÔÏ ×ÅËÔÏÒ grad u ÕËÁÚÙ×ÁÅÔ ÎÁÐÒÁ×ÌÅÎÉÅ
É ×ÅÌÉÞÉÎÕ ÎÁÉÂÙÓÔÒÅÊÛÅÇÏ ÒÏÓÔÁ ÆÕÎËÃÉÉ u × ÄÁÎÎÏÊ ÔÏÞËÅ. ðÒÏÉÚ×ÏÄÎÁÑ
∂u
∂`
× ÎÁÐÒÁ×ÌÅÎÉÉ ÇÒÁÄÉÅÎÔÁ ÉÍÅÅÔ ÎÁÉÂÏÌØÛÅÅ ÚÎÁÞÅÎÉÅ, ÒÁ×ÎÏÅ
(
∂u
∂`
)
Ω ΥΓ.
= |grad u| =
s
(
∂u
∂x
)
2
+ (
∂u
∂y
)
2
+ (
∂u
∂z
)
2
.
ðÒÉÍÅÒ 1. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ u = x − 2y + 3z.
òÅÛÅÎÉÅ. îÁÊÄ¾Í ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ:
∂u
∂x
= 1;
∂u
∂y
= −2;
∂u
∂z
= 3.
óÏÇÌÁÓÎÏ ÆÏÒÍÕÌÅ (5) ÉÍÅÅÍ:
grad u = 1 · i + (−2) · j + 3 · k, ÉÌÉ grad u = (1, −2, 3).
ðÏ×ÅÒÈÎÏÓÔÑÍÉ ÕÒÏ×ÎÑ ÄÁÎÎÏÇÏ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ Ñ×ÌÑÀÔÓÑ ÐÌÏÓËÏÓÔÉ x −
2y + 3z = c; ×ÅËÔÏÒ ÇÒÁÄÉÅÎÔ grad u = (1, −2, 3) ÅÓÔØ ÎÏÒÍÁÌØÎÙÊ ×ÅËÔÏÒ
ÐÌÏÓËÏÓÔÅÊ ÜÔÏÇÏ ÓÅÍÅÊÓÔ×Á.
ðÒÉÍÅÒ 2. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÆÕÎËÃÉÉ u = x
3
−xy × ÔÏÞËÅ (1, 2) É ÐÒÏÉÚ-
×ÏÄÎÕÀ
∂u
∂a
× ÔÏÞËÅ M × ÎÁÐÒÁ×ÌÅÎÉÉ ×ÅËÔÏÒÁ a = 5i − 3j.
òÅÛÅÎÉÅ. îÁÊÄ¾Í ÚÎÁÞÅÎÉÑ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ × ÔÏÞËÅ M:
∂u
∂x
|
M(1,2)
= (3x
2
− y)|
x=1,y=2
= 1,
∂u
∂y
|
M(1,2)
= −x|
x=1,y=2
= −1.
óÌÅÄÏ×ÁÔÅÌØÎÏ, ÐÏ ÆÏÒÍÕÌÅ (3)
(grad u)
M
= i − j = {1, −1}.
÷ ÓÏÏÔ×ÅÔÓÔ×ÉÉ Ó ÆÏÒÍÕÌÏÊ (1) ÎÁÈÏÄÉÍ
∂u
∂a
. îÁÐÒÁ×ÌÑÀÝÉÅ ËÏÓÉÎÕÓÙ ×ÅË-
ÔÏÒÁ a = 5i −3j, |a| =
p
5
2
+ (−3)
2
=
√
34 ÂÕÄÕÔ:
cos α =
5
√
34
, cos β =
−3
√
34
.
ôÏÇÄÁ
∂u
∂a
= 1 ·
5
√
34
+ (−1) · (
−3
√
34
) =
8
√
34
.
12 §8. ðÒÏÉÚ×ÏÄÎÁÑ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ. çÒÁÄÉÅÎÔ 2. çÒÁÄÉÅÎÔ ÎÁÐÒÁ×ÌÅÎ × ÓÔÏÒÏÎÕ ×ÏÚÒÁÓÔÁÎÉÑ ÆÕÎËÃÉÉ ÐÏÌÑ. 3. íÏÄÕÌØ ÇÒÁÄÉÅÎÔÁ ÒÁ×ÅÎ ÎÁÉÂÏÌØÛÅÊ ÐÒÏÉÚ×ÏÄÎÏÊ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ × ÄÁÎÎÏÊ ÔÏÞËÅ ÐÏÌÑ. üÔÉ Ó×ÏÊÓÔ×Á ÇÏ×ÏÒÑÔ Ï ÔÏÍ, ÞÔÏ ×ÅËÔÏÒ grad u ÕËÁÚÙ×ÁÅÔ ÎÁÐÒÁ×ÌÅÎÉÅ É ×ÅÌÉÞÉÎÕ ÎÁÉÂÙÓÔÒÅÊÛÅÇÏ ÒÏÓÔÁ ÆÕÎËÃÉÉ u × ÄÁÎÎÏÊ ÔÏÞËÅ. ðÒÏÉÚ×ÏÄÎÁÑ ∂u ∂` × ÎÁÐÒÁ×ÌÅÎÉÉ ÇÒÁÄÉÅÎÔÁ ÉÍÅÅÔ ÎÁÉÂÏÌØÛÅÅ ÚÎÁÞÅÎÉÅ, ÒÁ×ÎÏÅ s ∂u ∂u ∂u ∂u ( ) = |grad u| = ( )2 + ( )2 + ( )2 . ∂` ΩΥΓ. ∂x ∂y ∂z ðÒÉÍÅÒ 1. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ u = x − 2y + 3z. òÅÛÅÎÉÅ. îÁÊÄ¾Í ÞÁÓÔÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ: ∂u ∂u ∂u = 1; = −2; = 3. ∂x ∂y ∂z óÏÇÌÁÓÎÏ ÆÏÒÍÕÌÅ (5) ÉÍÅÅÍ: grad u = 1 · i + (−2) · j + 3 · k, ÉÌÉ grad u = (1, −2, 3). ðÏ×ÅÒÈÎÏÓÔÑÍÉ ÕÒÏ×ÎÑ ÄÁÎÎÏÇÏ ÓËÁÌÑÒÎÏÇÏ ÐÏÌÑ Ñ×ÌÑÀÔÓÑ ÐÌÏÓËÏÓÔÉ x − 2y + 3z = c; ×ÅËÔÏÒ ÇÒÁÄÉÅÎÔ grad u = (1, −2, 3) ÅÓÔØ ÎÏÒÍÁÌØÎÙÊ ×ÅËÔÏÒ ÐÌÏÓËÏÓÔÅÊ ÜÔÏÇÏ ÓÅÍÅÊÓÔ×Á. ðÒÉÍÅÒ 2. îÁÊÔÉ ÇÒÁÄÉÅÎÔ ÆÕÎËÃÉÉ u = x3 − xy × ÔÏÞËÅ (1, 2) É ÐÒÏÉÚ- ×ÏÄÎÕÀ ∂u ∂a × ÔÏÞËÅ M × ÎÁÐÒÁ×ÌÅÎÉÉ ×ÅËÔÏÒÁ a = 5i − 3j. òÅÛÅÎÉÅ. îÁÊÄ¾Í ÚÎÁÞÅÎÉÑ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ × ÔÏÞËÅ M : ∂u ∂u |M (1,2) = (3x2 − y)|x=1,y=2 = 1, |M (1,2) = −x|x=1,y=2 = −1. ∂x ∂y óÌÅÄÏ×ÁÔÅÌØÎÏ, ÐÏ ÆÏÒÍÕÌÅ (3) (grad u)M = i − j = {1, −1}. ∂u ÷ ÓÏÏÔ×ÅÔÓÔ×ÉÉ Ó ÆÏÒÍÕÌÏÊ p (1) ÎÁÈÏÄÉÍ√∂a . îÁÐÒÁ×ÌÑÀÝÉÅ ËÏÓÉÎÕÓÙ ×ÅË- ÔÏÒÁ a = 5i − 3j, |a| = 52 + (−3)2 = 34 ÂÕÄÕÔ: 5 −3 cos α = √ , cos β = √ . 34 34 ôÏÇÄÁ ∂u 5 −3 8 = 1 · √ + (−1) · ( √ ) = √ . ∂a 34 34 34