Теория приближенных методов решения операторных уравнений. Габдулхаев Б.Г. - 79 стр.

UptoLike

Составители: 

Рубрика: 

E
n
(x
) 6 kx
x
n
k 6
M
m
E
n
(x
), n N, (11.10)
E
n
(x
) = ρ(x
, H
n
)
H
x
H
H
n
H.
11.3.1.
H = L
2
(π, π) L
2
2π
(f, g) =
1
2π
π
Z
π
f(s)g(s) ds (f, g L
2
),
kfk =
Ã
1
2π
π
Z
π
|f(s)|
2
ds
!
1
2
(f L
2
).
L
2
ϕ
k
= ϕ
k
(s) = e
iks
= cos ks + i sin ks, k = 0, ±1, . . . ; −∞ < s < .
n = 2m + 1 (m = 0, 1, . . .)
L
2
x
n
(s) = x
2m+1
(s) =
m
X
k=m
α
k
e
iks
=
β
0
2
+
m
X
k=1
β
k
cos ks + γ
k
sin ks, α
k
= α
k
,
α
k
(k = m, m) β
r
(r = 0, m) γ
l
(l = 1, m)
m
X
k=m
α
k
c
r
(
k
) = c
r
(y), r = m, m,
c
r
(f) =
1
2π
π
Z
π
f(s) e
irs
ds, f L
2
,
äâóñòîðîííèå îöåíêè
                                     M
                 En (x∗ ) 6 kx∗ − x∗n k 6
                                        En (x∗ ), n ∈ N,     (11.10)
                                      m
ãäå En (x∗ ) = ρ(x∗ , Hn )H  íàèëó÷øåå ïðèáëèæåíèå ðåøåíèÿ x∗ ∈ H
âñåâîçìîæíûìè ýëåìåíòàìè èç Hn â ïðîñòðàíñòâå H.
     Òåïåðü ðàññìîòðèì íåêîòîðûå âàæíûå äëÿ ïðèëîæåíèé ÷àñòíûå
ñëó÷àè ðàññìîòðåííîãî âûøå îáùåãî ïðîåêöèîííîãî ìåòîäû.


      11.3.1. Ìåòîä ðåäóêöèè ïî òðèãîíîìåòðè÷åñêîé ñèñòåìå ôóíêöèé

     Ïóñòü H = L2 (−π, π) ≡ L2  ïðîñòðàíñòâî êâàäðàòè÷íî ñóììèðóå-
ìûõ ïî Ëåáåãó 2π -ïåðèîäè÷åñêèõ ôóíêöèé ñî ñêàëÿðíûì ïðîèçâåäåíèåì
è íîðìîé ñîîòâåòñòâåííî
                                     Zπ
                             1
                   (f, g) =                 f (s)g(s) ds (f, g ∈ L2 ),
                            2π
                                     −π
                              Ã        Zπ                 ! 21
                                   1
                   kf k =                   |f (s)|2 ds           (f ∈ L2 ).
                                  2π
                                       −π
Òîãäà L2 ïðåâðàùàåòñÿ â ñåïàðàáåëüíîå ãèëüáåðòîâî ïðîñòðàíñòâî. Âîçü-
ìåì â íåì ïîëíóþ îðòîíîðìàëüíóþ ñèñòåìó ôóíêöèé

   ϕk = ϕk (s) = eiks = cos ks + i sin ks,                k = 0, ±1, . . . ; −∞ < s < ∞.
     Ïîëîæèì n = 2m + 1 (m = 0, 1, . . .) è çà ïðèáëèæåííîå ðåøåíèå
óðàâíåíèÿ (11.1) â L2 âîçüìåì ýëåìåíò
                        m
                        X                            m
                                     iks     β0 X
xn (s) = x2m+1 (s) =          αk e         =   +  βk cos ks + γk sin ks,          αk = αk ,
                                             2
                       k=−m                         k=1

ãäå αk (k = −m, m) , à ñëåäîâàòåëüíî, è βr (r = 0, m) , γl (l = 1, m)  ïîä-
ëåæàùèå îïðåäåëåíèþ êîýôôèöèåíòû.  ëèíåéíîì ñëó÷àå îíè íàõîäÿòñÿ
èç ÑËÀÓ           mX
                           αk cr (Aϕk ) = cr (y),                r = −m, m,
                   k=−m
ãäå
                                       Zπ
                                  1
                       cr (f ) =             f (s) e−irs ds,       f ∈ L2 ,
                                 2π
                                       −π