Теория приближенных методов решения операторных уравнений. Габдулхаев Б.Г. - 8 стр.

UptoLike

Составители: 

Рубрика: 

e
K
1
r
e
K.
e
K
1
l
e
K.
e
K
1
r
K,
e
K P
P
(P
2
= P ).
P
íåïðåðûâíîãî ïðàâîãî îáðàòíîãî îïåðàòîðà K e r−1 äëÿ àïïðîêñèìèðóþùå-
ãî îïåðàòîðà K.e Íèæå îáùàÿ òåîðèÿ ïðèáëèæåííûõ ìåòîäîâ ñòðîèòñÿ
â ïåðâóþ î÷åðåäü íà îñíîâàíèè äîêàçàòåëüñòâà ñóùåñòâîâàíèÿ ëåâîãî
îáðàòíîãî îïåðàòîðà K e −1 äëÿ àïïðîêñèìèðóþùåãî îïåðàòîðà K.   e Êðî-
                        l
ìå òîãî, êàê íåïîñðåäñòâåííîå îáîáùåíèå òåîðèè Êàíòîðîâè÷à, ñòðîèòñÿ
òàêæå âàðèàíò òåîðèè ïðèáëèæåííûõ ìåòîäîâ, îñíîâàííûé íà äîêàçà-
òåëüñòâå ñóùåñòâîâàíèÿ ïðàâîãî îáðàòíîãî îïåðàòîðà K   e r−1 äëÿ îáùåãî
ëèíåéíîãî ïðèáëèæåííîãî óðàâíåíèÿ.
      3).  òåîðèè Êàíòîðîâè÷à îñíîâíûå îïåðàòîðû K, K   e è P ïðåäïî-
ëàãàþòñÿ ëèíåéíûìè íåïðåðûâíûìè, ïðè÷åì îïåðàòîð P ÿâëÿåòñÿ ïðî-
åêöèîííûì (P 2 = P ). Îäíàêî íà ïðàêòèêå âñòðå÷àþòñÿ è òàêèå ïðè-
áëèæåííûå ìåòîäû, â êîòîðûõ ýòî ïðåäïîëîæåíèå íå âûïîëíÿåòñÿ (òàêàÿ
ñèòóàöèÿ âîçíèêàåò, íàïðèìåð, ïðè èññëåäîâàíèè ñõîäèìîñòè â ñðåäíåì
ìåòîäà ìåõàíè÷åñêèõ êâàäðàòóð ðåøåíèÿ ñèíãóëÿðíûõ èíòåãðàëüíûõ è
èíòåãðîäèôôåðåíöèàëüíûõ óðàâíåíèé). Â ñâÿçè ñ ýòèì íèæå ðàññìàòðè-
âàåòñÿ òàêîé âàðèàíò îáùåé òåîðèè, êîãäà óêàçàííûå îïåðàòîðû èëè æå
íåêîòîðûå èç íèõ ÿâëÿþòñÿ íåîãðàíè÷åííûìè, ïðè÷åì îïåðàòîð P ìîæåò
è íå áûòü ïðîåêöèîííûì.
      4). Ââèäó áîëüøîé ïðàêòè÷åñêîé çíà÷èìîñòè ñïåöèàëüíî èññëåäóþò-
ñÿ ïðÿìûå ìåòîäû.  ÷àñòíîñòè, ðàññìàòðèâàþòñÿ âîïðîñû óñòîé÷èâîñòè,
îáóñëîâëåííîñòè è ïðàêòè÷åñêîé ðåàëèçàöèè òàêèõ ìåòîäîâ.
      5).  òåîðèè Êàíòîðîâè÷à ðàññìàòðèâàþòñÿ ëèøü òàêèå óðàâíåíèÿ,
çàäà÷à ðåøåíèÿ êîòîðûõ ïîñòàâëåíà â êëàññè÷åñêîì ñìûñëå êîððåêòíî.
Íèæå ðàññìàòðèâàåòñÿ òàêîé âàðèàíò îáùåé òåîðèè, êîòîðûé ïðèñïîñîá-
ëåí äëÿ ïðèìåíåíèÿ è ê íåêîððåêòíî ïîñòàâëåííûì çàäà÷àì.  ÷àñòíîñòè,
ïðåäëàãàþòñÿ è èññëåäóþòñÿ äâà ïðÿìûõ ìåòîäà ðåøåíèÿ íåêîððåêòíûõ
çàäà÷ â ñåïàðàáåëüíûõ ãèëüáåðòîâûõ ïðîñòðàíñòâàõ.
      6). Èññëåäóþòñÿ àïïðîêñèìàòèâíî-èòåðàöèîííûå ìåòîäû, â òîì ÷èñ-
ëå ìåòîä óòî÷íÿþùèõ èòåðàöèé.
      7). Ïðåäëàãàåòñÿ òåîðåòè÷åñêîå îáîñíîâàíèå ìåòîäà íàèìåíüøèõ
êâàäðàòîâ è ìåòîäà ìèíèìàëüíûõ íåâÿçîê äëÿ ëèíåéíûõ îïåðàòîðíûõ
óðàâíåíèé â ïàðàõ íîðìèðîâàííûõ ïðîñòðàíñòâ.
      8). Èññëåäóþòñÿ ïðèáëèæåííûå ìåòîäû ðåøåíèÿ ëèíåéíûõ è íåëè-
íåéíûõ óðàâíåíèé ñ ìîíîòîííûìè îïåðàòîðàìè â ãèëüáåðòîâûõ ïðîñòðàí-
ñòâàõ.