ВУЗ:
Составители:
Рубрика:
10
Таблица
1.1.3
Множества
и
операции
над
ними
№ Понятие Содержание Пример
1 Множество
совокупность, набор каких-либо
предметов
– множество сту-
дентов института;
– множество кор-
ней уравнения
2
Элементы мно-
жества
предметы, составляющие мно-
жество
−
3
Пустое множе-
ство
(
)
∅
множество, не содержащее ни
одного элемента
−
4
Подмножество
A
(множества
A
)
A B
⊂
если каждый элемент множества
A
является элементом множе-
ства
B
{
}
2,3,5
A =
{
}
1,2,3,4,5,6
B =
5
Равные множе-
ства
A B
=
если
A B
⊂
и
A B
⊃
{
}
1,2,3,4,5,6
A =
{
}
1,2,3,4,5,6
B =
6
Объединение
(сумма) мно-
жеств
A B
∪
(
или
A B
+
)
множество, состоящее из эле-
ментов, каждое из которых при-
надлежит хотя бы одному из
множеств А или В;
{
}
: или
A B x x A x B
= ∈ ∈
∪
{
}
2,3,5,7
A =
{
}
1,2,3,4,5,6
B =
{
}
1,2,3,4,5,6,7
A B =
∪
7
Пересечение
(произведение)
множеств
A B
∩
(
или
A B
⋅
)
множество, состоящее из эле-
ментов, каждый из которых
принадлежит и множеству А и
множеству В;
{
}
: и
A B x x A x B
= ∈ ∈
∩
{
}
2,3,5,7
A =
{
}
1,2,3,4,5,6
B =
{
}
2,3,5
A B =
∩
8
Разность мно-
жеств А\В
множество, состоящее из эле-
ментов, принадлежащих множе-
ству А, не входящих в множест-
во В;
{
}
\ : и
A B x x A x B
= ∈ ∉
А={2, 3, 5, 7}
В={1, 2, 3, 4, 5, 6}
\
A B
={7}
\
B A
={1, 4, 6}
9
Интервал
(числовой про-
межуток)
подмножества всех действи-
тельных чисел
−
10
Отрезок (сег-
мент, замкнутый
промежуток)
[
]
;
a b
{
}
:
x a x b
≤ ≤
−
Страницы
- « первая
- ‹ предыдущая
- …
- 9
- 10
- 11
- 12
- 13
- …
- следующая ›
- последняя »