Руководство к решению задач по алгебре. Часть 1. Глушакова Т.Н - 13 стр.

UptoLike

Рубрика: 

- 13 -
−−
2
1
2
3
12
10
01
13
01
20
21
10
01
43
213
=
2
1
2
3
12
1
A
.
II способ:
=
−=
=
2
1
2
3
12
13
24
2
1
13
24
det
1
1
A
A
.
Таким образом,
−−
=
−⋅
++⋅−
=
=
32
11
9
2
1
5
2
3
5
2
1
3
2
3
91525132
95
53
2
1
2
3
12
X
.
Ответ:
=
32
11
X .
§2. ОПРЕДЕЛИТЕЛИ: ОПРЕДЕЛЕНИЕ, СВОЙСТВА И
ВЫЧИСЛЕНИЕ
2.1. Понятие перестановки, подстановки, инверсии, транспозиции
Определение 1. Биективное (взаимнооднозначное) отображение конечного
множества на себя называется
перестановкой
.
Перестановки множества
{
}
nA ,...,2,1
=
обычно записывают в виде
=
n
n
ααα
ϕ
...
...21
21
. (2.1.1)
Эта запись означает, что
i
i
α
ϕ
=
)(
.
Пример 2.1.1. Выписать все перестановки, соответствующие данной:
                                        - 13 -

           −3 � 1 2 1 0 �            � 1 2 1 0�            � 1 0 −2 1 �
               ��            �� → ��                �� → �        3  1� ⇒
                                                            � 0 1   − �
                  � 3 4 0 1�          � 0 −2 −3 1 �          �    2  2�

                                     � −2 1 �
                                 A =� 3
                                  −1
                                             1� .
                                      �     −   �
                                        � 2  2�

II способ:
                      1 � 4 −2 �        1 � 4 −2 � �� −2 1 ��
              A −1 =       ��      �� =− ��        � = 3   1 .
                    det A � −3 1 �      2 � −3 1 �� �     − �
                                                      � 2  2�
Таким образом,

          � −2 1 � � 3 5 � � −2 ⋅ 3 +1 ⋅ 5 −2 ⋅5 +1 ⋅ 9 � � −1 −1�
      X =� 3      1 � ��     �� =� 3       1     3      1 � =��         � .
           �     −   � � 5 9� �       ⋅ 3 −  ⋅ 5   ⋅ 5 − ⋅ 9 � � 2 3 ��
             � 2  2�              � 2      2     2      2 �

                                                 � −1 −1�
                                Ответ: X =��             �� .
                                                  � 2 3    �


              §2. ОПРЕДЕЛИТЕЛИ: ОПРЕДЕЛЕНИЕ, СВОЙСТВА И
                            ВЫЧИСЛЕНИЕ

    2.1.     Понятие перестановки, подстановки, инверсии, транспозиции

   Определение 1. Биективное (взаимнооднозначное) отображение конечного
множества на себя называется перестановкой.
   Перестановки множества A ={1,2,..., n} обычно записывают в виде
                              � 1 2 ... n �
                         ϕ =��                      � .
                                                     �                      (2.1.1)
                                α
                               � 1  α 2    ... α n�
    Эта запись означает, что ϕ (i ) =α i .

Пример 2.1.1. Выписать все перестановки, соответствующие данной: