Современное программное обеспечение в пользовательском процессе: Сборник заданий по курсу. Глушко А.В - 105 стр.

UptoLike

Составители: 

99x
£
@tD == -
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.75 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H3 + jL
2
y
{
z
z
z
ESin@2x@tDD
3
-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.8 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H4 + jL
2
y
{
z
z
z
Ex@tD-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
6j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + jL
2
y
{
z
z
z
Ey@tD
2
,
y
£
@tD == -
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
Cos@x@tDD
3
RoundA100
i
k
j
j
j
1 +
10 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H2 + jL
2
y
{
z
z
z
E-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.85 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H5 + jL
2
y
{
z
z
z
Ey@tD,
x@0D == -0.2 + 0.0011 j RoundA100
i
k
j
j
j
1 +
5j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + jL
2
y
{
z
z
z
E,
y@0D == 1.05 - 0.0012 j RoundA100
i
k
j
j
j
1 +
5j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + jL
2
y
{
z
z
z
E=,
8x, y<, 8t, -0.95 + 0.05 j, 1.78 - 0.1 j<,
MaxSteps Ø 1000 H19 + jL,
AccuracyGoal ض, PrecisionGoal Ø 14 + j,
WorkingPrecision Ø 16, Method Ø RungeKutta,
PlotStyle Ø 8Thickness@0.002 + 0.0008 jD, Hue@0.9 - 0.18 jD<,
PlotPoints Ø 100 + 10 j=
5. Найти численное решение граничной задачи для уравнения второго
порядка с комплекснозначными данными. Построить объединённый график
абсолютной величины, вещественной и мнимой частей решения, а также
трёхмерный график решения с помощью команды ParametricPlot3D в
подпакете <<Graphics`ParametricPlot3D`. Провести проверку решения
88H2.28 + 5.25 ÂLu@xD+ H4.2 - 4.89 ÂLu
£
@xD+ u
££
@xD == H3.846 - xL
HH0.386 + 1.926 ÂL+ H0.1475 - 1.788 ÂLxLSin@H0.11538 + 0.13 ÂLxD,
1.97 Â u@0D+ u
£
@0D == 2.338 - 2.8495 Â,
-5.9 Â u@3.846D+ u
£
@3.846D == 0.298198 + 0.630932 Â<,
8x, 0, 3.846<, MaxSteps Ø 23000, PrecisionGoal Ø 23,
WorkingPrecision Ø 23, Method Ø RungeKutta<
z
ad ok7bis.nb 105
zad ok7bis.nb                                                                                                                       105



                                          i       0.75 j y
    99x£ @tD == - ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE Sin@2 x@tDD3 - ÅÅÅÅÅÅÅÅÅÅÅÅ
                                          k     H3 + jL {
                      1                                                                       1
                   100                                                                     100
                             i        0.8 j y                                                i          6j y
                  RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE x@tD - ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE y@tD2 ,
                             k     H4 + jL {                                                 k     H1 + jL {
                                                                         1
                                                                      100
                                                        i         10 j y
         y£ @tD == - ÅÅÅÅÅÅÅÅÅÅÅÅ Cos@x@tDD3 RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE -
                                                        k     H2 + jL {
                         1
                      100
                                        i       0.85 j y
                ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE y@tD,
                                        k     H5 + jL {
                    1
                 100
                                            i          5j y
         x@0D == -0.2 + 0.0011 j RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE,
                                            k     H1 + jL {
                                            i          5j y
         y@0D == 1.05 - 0.0012 j RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE=,
                                            k     H1 + jL {
       8x, y<, 8t, -0.95 + 0.05 j, 1.78 - 0.1 j<,
       MaxSteps Ø 1000 H19 + jL,
       AccuracyGoal Ø ¶, PrecisionGoal Ø 14 + j,

       PlotStyle Ø [email protected] + 0.0008 jD, [email protected] - 0.18 jD<,
       WorkingPrecision Ø 16, Method Ø RungeKutta,

       PlotPoints Ø 100 + 10 j=


    5. Найти численное решение граничной задачи для уравнения второго
    порядка с комплекснозначными данными. Построить объединённый график
    абсолютной величины, вещественной и мнимой частей решения, а также
    трёхмерный график решения с помощью команды ParametricPlot3D в
    подпакете <