Синтез распределенных регуляторов. Григорьев В.В - 133 стр.

UptoLike

132
функции ),(
s
x
f
в ряд Фурье
[
]
(
)
== ,1;)()( isfsf
i
;
)(
ˆ
sR - передаточная матрица регулятора.
Так как регулятор обладает свойством пространственной
инвариантности, то передаточная матрица регулятора имеет диагональную
форму (
ηη
,
ˆ
diagRR =
;
= ,1
η
); Wпередаточная матрица объекта
[]
== ,1,;(
,
iWW
i
η
η
);
i
W
,
η
- реакция объекта по η-му выходу на iй
вход (
= ,1, i
η
);
S
~
- блок, выполняющий операцию умножения входного
воздействия на вектор, состоящий из тригонометрических функций. Если
входное воздействие представлено в виде ряда Фурье по sin(.), то
передаточная матрица блока
S
~
имеет вид:
[]
,)sin(
~
xS
i
Ψ= ,,1 =i (
S
~
- вектор-строка).
Если входное воздействие представлено в виде ряда Фурье по cos(.),
то
[
]
,)cos(
~
xS
i
Ψ= = ,1i .
Для асимптотической устойчивости системы, представленной на
рис. 5.3, достаточно обеспечить асимптотическую устойчивость контура
1.
Передаточная матрица блока 1 (рис. 3.11) может быть записана на
виде:
RWRWIsÔ ][)(
1
+=
Рассмотрим формирование структуры передаточной матрицы
регулятора
R
. Положим, что регулятор выбран в виде идеального
пространственно-интегрирующего звена, передаточная функция которого
записывается в виде следующего соотношения:
.
11
1
),(
2
44
4
4
snn
n
EsxR
=
Представляя входное воздействие в виде ряда Фурье по
пространственным координатам, и определив передаточную функцию
по каждой составляющей ряда входного воздействия, получим