Составители:
141
22
1
)/()/(
LL
yxG
ππ
+= ,
22
2
)/4()/5(
LL
yxG ⋅+⋅=
ππ
,
096,6
1
=G , 00890,0
)1(
1
=
ω
, 0093,0
)2(
1
=
ω
,
0,113
2
=G , 00892,0
)1(
2
=
ω
, 00935,0
)2(
2
=
ω
,
Подставляя значения
)(
ξ
η
ω
в соотношение
),,(
)(
)(
)(
ω
ξ
η
ξ
ξ
ξ
η
jzGWM
G
= , получим:
00303,0)(
1
)1(
=GM , 00282,0)(
2
)1(
=GM ,
00393,0)(
1
)2(
=GM , 00356,0)(
2
)2(
=GM .
Так как
)(
1
ξ
ω
и
)(
2
ξ
ω
является частотами среза модуля
разомкнутой системы, то коэффициенты усиления регуляторов равны
1
1
)1(
)1(
1
))((
−
= GMM ,
1
2
)1(
)1(
2
))((
−
= GMM
1
1
)2(
)2(
1
))((
−
= GMM ,
1
2
)2(
)2(
2
))((
−
= GMM
Приравнивая
)(
)(
min
ξ
η
ξ
η
MM = , )2,1,(
=
γ
η
(см. п.3.3.) и рассматривая
совместно полученные соотношения, определим значения
)(
1
ξ
n и
)(
1
ξ
Е :
1432
)1(
1
=n , 0,1020
)2(
1
=n ,
4,328
)1(
1
=E , 6,252
)2(
1
=E .
Представим совокупность радиусов спектров Гершгорина
матрицы )(
ω
j
Ф для
)(
,
ξ
ηη
ω
G )2,1...;2,1(
=
=
ξ
η
в виде двух
последовательностей
)1(
1
r ,
)1(
2
r , …
)2(
1
r ,
)2(
2
r , ….
Выбор значения
ξ
Δ будет осуществлять, исходя из следующего
условия:
)))(lg())((lg(3
)(
max1
)(
)(
max1
)()(
ξ
ξ
ξ
ξξ
rGMrGM −−+⋅≥Δ ;
)(
max
)(
ξ
ξ
rM ≥ , )2,1(
=
ξ
,
Страницы
- « первая
- ‹ предыдущая
- …
- 140
- 141
- 142
- 143
- 144
- …
- следующая ›
- последняя »
