ВУЗ:
Составители:
Рубрика:
ластью изменения (областью значений) функции и обозна-
чается E(f ).
Две функции называются равными, если они имеют
одинаковые области определения и каждому значению аргу-
мента они ставят в соответствие одно и тоже число.
Наиболее распространенный способ задания функции –
аналитический, то есть с помощью формулы. Например,
функцию, ставящую в соответствие каждому неотрицатель-
ному числу х его квадратный корень, можно записать в виде
xy
=
или
xxf
=
)(
. Этот способ задания функции
компактен, содержит полную информацию о свойствах
функции и наиболее удобен при проведении расчетов. Если
не сделано специальной оговорки, то за область определения
функции берут все значения аргумента, для которых указан-
ные в формуле действия выполнимы. Например, область
определения функции
xxf
=
)(
все неотрицательные значе-
ния х, то есть
( ) [0; )D f
= + Ґ
, а для функции
42
13
)(
−
−
=
x
x
xg
–
область определения все действительные значения х, кроме
2x
=
, то есть D(g) = \{2}.
Иногда для разных значений х функция задается разны-
ми формулами. В этом случае используют обозначение:
∈
∈
∈
=
nn
Xxxf
Xxxf
Xxxf
xf
),(
...
),(
),(
)(
22
11
, причем
)(...
21
fDXXX
n
=∪∪∪
.
График такой функции состоит из n частей.
10
Страницы
- « первая
- ‹ предыдущая
- …
- 8
- 9
- 10
- 11
- 12
- …
- следующая ›
- последняя »