Рабочая тетрадь по теории статистики для лекционных занятий. Хохлова О.А. - 60 стр.

UptoLike

Составители: 

Рубрика: 

60
нормальному закону распределения или близость к
нему. Если объем исследуемой совокупности
достаточно большой
)50( n , то нормальность
распределения может быть подтверждение на основе
3)
расчета и анализа критериев Пирсона,
Ястремского, Боярского, Колмагорова и т.д. Если
50n , то закон распределения исходных данных
определяется на базе построения и визуального
анализа поля корреляции. При этом, если в
расположении точек просматривается линейная
тенденция, то можно предположить, что
совокупность исходных данных
)...,,(
21 n
xxxy
подчиняется нормальному распределению.
П. Целью регрессионного анализа является
оценка функциональной зависимости условного
среднего значения результативного признака
)(
Y
от
факторных
)...,(
21 n
xxx .
Основной предпосылкой регрессионного
анализа является то, что только результативный
признак
)(
Y
подчиняется нормальному закону
распределения, а факторные -
n
xx ...
1
могут иметь
произвольный закон распределения.
Статистическая модель социально
экономических явлений или уравнение регрессии,
выражаемая функцией:
)...,(
21 n
x
xxxfY = ,является
достаточно адекватным реальному моделируемому
явлению в случае соблюдения следующих
требований их построения:
1)
совокупность исследуемых исходных данных
должна быть однородной и математически
описываться непрерывными функциями;
2)
возможность описания моделируемого
явления одним или несколькими уравнениями
причинноследственных связей;
3)
все факторные признаки должны иметь
количественное выражение;
4)
наличие достаточно большого объема
исследуемой выборочной совокупности;
5)
причинноследственные связи между
явлениями следует описывать линейной или
приводимой к линейной зависимости.
6)
Отсутствие количественных ограничений на
параметры модели связи;
7)
постоянство территориальной и временной
структуры изучаемой совокупности.
Соблюдение данных требований позволяет
нормальному закону распределения или близость к
нему. Если объем исследуемой совокупности
достаточно большой ( n〉 50) , то нормальность
распределения может быть подтверждение на основе


3)     расчета и анализа критериев Пирсона,
Ястремского, Боярского, Колмагорова и т.д. Если
n〈50 , то закон распределения исходных данных
определяется на базе построения и визуального
анализа поля корреляции. При этом, если в
расположении точек просматривается линейная
тенденция,    то   можно    предположить,      что
совокупность исходных данных ( y , x1 , x 2 ...x n )
подчиняется нормальному распределению.

     П. Целью регрессионного анализа является
оценка функциональной зависимости условного
среднего значения результативного признака (Y ) от
факторных ( x1 , x 2 ...x n ) .
     Основной          предпосылкой регрессионного
анализа является то, что только результативный
признак (Y ) подчиняется нормальному закону
распределения, а факторные - x1 ...x n могут иметь
произвольный закон распределения.
     Статистическая    модель      социально     –
экономических явлений или уравнение регрессии,
выражаемая функцией: Y x = f ( x1 , x 2 ...x n ) ,является
достаточно адекватным реальному моделируемому
явлению    в   случае    соблюдения          следующих
требований их построения:
1)    совокупность исследуемых исходных данных
должна быть однородной и математически
описываться непрерывными функциями;
2)    возможность     описания         моделируемого
явления одним или несколькими уравнениями
причинно – следственных связей;
3)    все факторные признаки должны иметь
количественное выражение;
4)    наличие    достаточно     большого           объема
исследуемой выборочной совокупности;
5)    причинно – следственные связи между
явлениями следует описывать линейной или
приводимой к линейной зависимости.
6)    Отсутствие количественных ограничений на
параметры модели связи;
7)    постоянство территориальной и временной
структуры изучаемой совокупности.
     Соблюдение данных требований позволяет
                                                             60