Методы расчета устойчивости энергосистем. Хрущев Ю.В. - 142 стр.

UptoLike

Составители: 

142
МЕТОДЫ РАСЧЕТА УСТОЙЧИВОСТИ ЭНЕРГОСИCТЕМ
интегрирования дифференциальных уравнений сделаем не
сколько замечаний.
Замечание 1. При внимательном рассмотрении метода про
гноза и коррекции можно заметить его сходство с модифици
рованным методом Эйлера на стадии прогноза и с исправлен
ным методом Эйлера на стадии коррекции. Однако следует осо
бо отметить, что на стадии прогноза (формула 6.11) одновре
менно используется информация предшествующего и расчет
ного шагов, а именно значения x
k–1
и x
k
. Значение x
k
на пер
вом шаге должно быть получено какимлибо из одношаговых
методов, чтобы осуществить «запуск» расчета, а основная часть
осуществляется многошаговыми методами.
Замечание 2. Возникает вопрос о сходимости итерационно
го процесса. Без доказательства отметим, что итерационный
процесс будет сходиться, если величину шага выбрать из усло
вия [12]
h < 2/M, (6.15)
где
(, )ftx
M
x
. (6.16)
Из (6.16) следует, что частная производная (t, x)/x должна
быть величиной ограниченной.
Замечание 3. Тот факт, что итерационный процесс коррек
ции сходится, совсем не означает, что он сходится к точному
значению искомой функции. Процесс сходится лишь к наи
лучшему приближению функции для принятого метода кор
рекции. При коррекции по формуле (6.13) возникающая ошиб
ка ограничения легко оценивается по выражению
() ()
()
()
0
111
1
5
i
hk k k
Exx
+++
=−
(6.17)
на каждом шаге интегрирования. Это является большим дос
тоинством метода. Более того, оценку (6.17) можно использо
вать, как это рекомендуют Д. МакКракен и У. Дорн [12], в ка
честве поправки для уточнения полученного решения на шаге
по формуле