Классическая механика и специальная теория относительности. Хуснутдинов Р.М. - 32 стр.

UptoLike

Составители: 

Рубрика: 

L(x, y, z, ˙x, ˙y, ˙z) =
m
2
˙x
2
+ ˙y
2
+ ˙z
2
mgz,
p
x
=
L
˙x
= m ˙x, p
y
=
L
˙y
= m ˙y, p
z
=
L
˙z
= m ˙z.
H(x, y, z, p
x
, p
y
, p
z
) =
p
2
x
+ p
2
y
+ p
2
z
2m
+ mgz.
(
˙p
x
= 0, ˙p
y
= 0, ˙p
z
= mg,
˙x =
p
x
m
, ˙y =
p
y
m
, ˙z =
p
z
m
.
p
x
(t) = p
0x
, p
y
(t) = p
0y
, p
z
(t) = p
0z
mgt,
x(t) =
p
0x
t
m
+ x
0
, y(t) =
p
0y
t
m
+ y
0
, z(t) =
gt
2
2
+
p
0z
t
m
+ z
0
.
p
0x
p
0y
p
0z
x
0
y
0
z
0
L(̺, ϕ, z, ˙̺, ˙ϕ, ˙z) =
m
2
˙̺
2
+ ̺
2
˙ϕ
2
+ ˙z
2
mgz,
p
̺
=
L
˙̺
= m ˙̺, p
ϕ
=
L
˙ϕ
=
2
˙ϕ, p
z
=
L
˙z
= m ˙z.
H(̺, ϕ, z, p
̺
, p
ϕ
, p
z
) =
1
2m
p
2
̺
+
p
2
ϕ
̺
2
+ p
2
z
+ mgz.
L(ρ, φ, θ, ˙ρ,
˙
φ,
˙
θ) =
m
2
˙ρ
2
+ ρ
2
˙
φ
2
+ ρ
2
˙
θ
2
sin
2
φ
mgρ cos φ,
p
ρ
=
L
˙ρ
= m ˙ρ, p
φ
=
L
˙
φ
=
2
˙
φ, p
θ
=
L
˙
θ
=
2
˙
θ sin
2
φ.
H(ρ, φ, θ, p
ρ
, p
φ
, p
θ
) =
1
2m
p
2
ρ
+
p
2
φ
ρ
2
+
p
2
θ
ρ
2
sin
2
φ
+ mgρ cos φ.
à.   Â äåêàðòîâûõ êîîðäèíàòàõ:
                                          m 2
                                               ẋ + ẏ 2 + ż 2 − mgz,
                                                               
                   L(x, y, z, ẋ, ẏ, ż) =
                                          2
                   ∂L                     ∂L                      ∂L
            px =        = mẋ,       py =       = mẏ, pz =            = mż.
                   ∂ ẋ                   ∂ ẏ                    ∂ ż
     Òîãäà ñ ïîìîùüþ (2), íàõîäèì

                                              p2x + p2y + p2z
                   H(x, y, z, px, py , pz ) =                 + mgz.
                                                   2m
     Ïîäñòàâëÿÿ ýòî âûðàæåíèå â (3), ïîëó÷èì óðàâíåíèÿ äâèæåíèÿ:
                        (
                            ṗx = 0,     ṗy = 0,   ṗz = −mg,
                                 px            py         pz
                            ẋ = ,        ẏ = ,      ż = .
                                 m             m          m
     Îáùåå ðåøåíèå ýòèõ óðàâíåíèé èìååò âèä:
     
      px (t) = p0x , py (t) = p0y , pz (t) = p0z − mgt,
               p t                  p t                      gt2 p0z t
      x(t) = 0x + x0, y(t) = 0y + y0 , z(t) = −                +      + z0 .
                m                     m                       2    m
     Çäåñü ïîñòîÿííûå p0x , p0y , p0z , x0 , y0 , z0 îïðåäåëÿþò çíà÷åíèÿ
     èìïóëüñà è êîîðäèíàò â íà÷àëüíûé ìîìåíò âðåìåíè.

á.    öèëèíäðè÷åñêèõ êîîðäèíàòàõ:

                                      m 2
                                           ̺˙ + ̺2 ϕ̇2 + ż 2 − mgz,
                                                             
               L(̺, ϕ, z, ̺,
                          ˙ ϕ̇, ż) =
                                       2
              ∂L                      ∂L                         ∂L
         p̺ =      = m̺,˙      pϕ =         = m̺2 ϕ̇, pz =            = mż.
              ∂ ̺˙                    ∂ ϕ̇                       ∂ ż
                                                    p2ϕ
                                                              
                                         1      2            2
            H(̺, ϕ, z, p̺, pϕ , pz ) =         p +      + pz + mgz.
                                        2m ̺ ̺2
â.    ñåðè÷åñêèõ êîîðäèíàòàõ:
                                                              
                                m 2
       L(ρ, φ, θ, ρ̇, φ̇, θ̇) =     ρ̇ + ρ2 φ̇2 + ρ2 θ̇2 sin2 φ − mgρ cos φ,
                                2
            ∂L                     ∂L                   ∂L
     pρ =        = mρ̇,       pφ =      = mρ2 φ̇, pθ =       = mρ2 θ̇ sin2 φ.
            ∂ ρ̇                   ∂ φ̇                 ∂ θ̇
                                             p2φ    p2θ
                                                          
                                   1      2
       H(ρ, φ, θ, pρ, pφ , pθ ) =        p +     +           + mgρ cos φ.
                                  2m ρ ρ2 ρ2 sin2 φ

                                              32