Уравнения математической физики. Уравнение колебаний струны. Хуснутдинов Н.Р. - 16 стр.

UptoLike

Составители: 

w
x
(0, t) = 0, w
x
(l, t) = 0.
w(x, t)
u(x, t)
u(x, t) = w(x, t) + U(x, t)
U(x, t) w(x, t)
U(x, t) = φ(t) + β(t)
x
2
2l
w(0, t) = u(0, t) U(0, t) = φ(t) φ(t) = 0,
w
x
(l, t) = u
x
(l, t) U
x
(l, t) = β(t) β(t) = 0,
w(x, t)
f
c
(x) = f(x) φ(0) β(0)
x
2
2l
,
F
c
(x) = F (x) φ
(0) β
(0)
x
2
2l
,
G
c
(x, t) = G(x, t) φ
′′
(t) β
′′
(t)
x
2
2l
.
w(x, t)
G
c
2
w
t
2
v
2
2
w
x
2
= G
c
.
w(x, 0) = f
c
(x),
w
t
(x, 0) = F
c
(x),
w(0, t) = 0, w
x
(l, t) = 0.
w(x, t)
u(x, t)
u(x, t) = w(x, t) + U(x, t)
U(x, t) w(x, t)
U(x, t) = ψ(t) α(t)
(x l)
2
2l
w
x
(0, t) = u
x
(0, t) U
x
(0, t) = α(t) α(t) = 0,
w(l, t) = u(l, t) U(l, t) = ψ(t) ψ(t) = 0,
w(x, t)
f
d
(x) = f(x) ψ(0) + α(0)
(x l)
2
2l
,
F
d
(x) = F (x) ψ
(0) + α
(0)
(x l)
2
2l
,
è   îäíîðîäíûì   ãðàíè÷íûì óñëîâèÿì                                              åøåíèå óäîâëåòâîðÿåò ñëåäóþùèì íà÷àëüíûì óñëîâèÿì:
                          wx′ (0, t) = 0, wx′ (l, t) = 0.                 (41)                                 w(x, 0) = fc (x),
Ïîýòîìó äîñòàòî÷íî ðåøèòü çàäà÷ó ñ îäíîðîäíûìè ãðàíè÷íûìè óñ-                                                  wt′ (x, 0) = Fc (x),
ëîâèÿìè (41), ïîëó÷èòü âûðàæåíèå äëÿ w(x, t), à çàòåì ïî îðìóëå
(39) âû÷èñëèòü èñêîìóþ óíêöèþ u(x, t).                                          è   îäíîðîäíûì   ãðàíè÷íûì óñëîâèÿì

                                                                                                           w(0, t) = 0, wx′ (l, t) = 0.              (42)
2.10     Âûíóæäåííûå êîëåáàíèÿ ñòðóíû êîíå÷íîé äëèíû.
             Íåîäíîðîäíûå ãðàíè÷íûå óñëîâèÿ (3 ).                                Ïîýòîìó äîñòàòî÷íî ðåøèòü çàäà÷ó ñ îäíîðîäíûìè ãðàíè÷íûìè óñ-
                                                                                 ëîâèÿìè (42), ïîëó÷èòü âûðàæåíèå äëÿ w(x, t), à çàòåì ïî îðìóëå
     Ñäåëàåì çàìåíó èñêîìîé óíêöèè
                                                                                 (39) âû÷èñëèòü èñêîìóþ óíêöèþ u(x, t).
                          u(x, t) = w(x, t) + U (x, t)
                                                                                 2.11     Âûíóæäåííûå êîëåáàíèÿ ñòðóíû êîíå÷íîé äëèíû.
è ïîäáåðåì óíêöèþ U (x, t) òàê, ÷òîáû íîâàÿ óíêöèÿ w(x, t) óäî-                             Íåîäíîðîäíûå ãðàíè÷íûå óñëîâèÿ (3d).
âëåòâîðÿëà áû îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì (2 ). Ëåãêî âèäåòü,
÷òî óíêöèÿ
                                                                                      Ñäåëàåì çàìåíó èñêîìîé óíêöèè
                                            x2
                     U (x, t) = φ(t) + β(t)
                                            2l                                                             u(x, t) = w(x, t) + U (x, t)
óäîâëåòâîðÿåò òðåáóåìûì óñëîâèÿì. Äåéñòâèòåëüíî
                                                                                 è ïîäáåðåì óíêöèþ U (x, t) òàê, ÷òîáû íîâàÿ óíêöèÿ w(x, t) óäî-
           w(0, t) =         u(0, t) − U (0, t) = φ(t) − φ(t) = 0,               âëåòâîðÿëà áû îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì (2d). Ëåãêî âèäåòü,
           wx′ (l, t) =      u′x (l, t) − Ux′ (l, t) = β(t) − β(t) = 0,          ÷òî óíêöèÿ
                                                                                                                           (x − l)2
ò.å. óíêöèÿ w(x, t) óäîâëåòâîðÿåò îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì                                    U (x, t) = ψ(t) − α(t)
                                                                                                                              2l
(2 ).
    Îáîçíà÷èì                                                                    óäîâëåòâîðÿåò òðåáóåìûì óñëîâèÿì. Äåéñòâèòåëüíî

                                                      x2                                   wx′ (0, t) = u′x (0, t) − Ux′ (0, t) = α(t) − α(t) = 0,
                   fc (x)    = f (x) − φ(0) − β(0)        ,
                                                      2l                                     w(l, t)   = u(l, t) − U (l, t) = ψ(t) − ψ(t) = 0,
                                                         x2
                   Fc (x)    = F (x) − φ′ (0) − β ′ (0) ,
                                                         2l                      ò.å. óíêöèÿ w(x, t) óäîâëåòâîðÿåò îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì
                                                            x2                   (2d).
                 Gc (x, t)   = G(x, t) − φ′′ (t) − β ′′ (t) .                        Îáîçíà÷èì
                                                            2l
   Òàêèì îáðàçîì, óíêöèÿ w(x, t) óäîâëåòâîðÿåò óðàâíåíèþ êîëå-                                                                     (x − l)2
áàíèÿ ñòðóíû ñ ïëîòíîñòüþ âûíóæäàþùåé ñèëû Gc                                                     fd (x)   = f (x) − ψ(0) + α(0)             ,
                                                                                                                                       2l
                              ∂2w       2                                                                                             (x − l)2
                                      2∂ w                                                        Fd (x)   = F (x) − ψ ′ (0) + α′ (0)          ,
                                  − v      = Gc .                                                                                        2l
                              ∂t2      ∂x2

                                      31                                                                           32