ВУЗ:
Составители:
Рубрика:
w(x, t)
w(x, 0) = u(x, 0) − U(x, 0) = f(x) − φ(0) − [ψ(0) − φ(0)]
x
l
,
w
′
t
(x, 0) = u
′
t
(x, 0) − U
′
t
(x, 0) = F (x) − φ
′
(0) − [ψ
′
(0) − φ
′
(0)]
x
l
.
w(x, t)
∂
2
w
∂t
2
− v
2
∂
2
w
∂x
2
= G − U
′′
tt
(x, t).
f
a
(x) = f(x) − φ(0) − [ψ(0) − φ(0)]
x
l
,
F
a
(x) = F (x) − φ
′
(0) − [ψ
′
(0) − φ
′
(0)]
x
l
,
G
a
(x, t) = G(x, t) − φ
′′
(t) − [ψ
′′
(t) − φ
′′
(t)]
x
l
.
w(x, t)
G
a
∂
2
w
∂t
2
− v
2
∂
2
w
∂x
2
= G
a
.
w(x, 0) = f
a
(x),
w
′
t
(x, 0) = F
a
(x),
w(0, t) = 0, w(l, t) = 0.
w(x, t)
u(x, t)
u(x, t) = w(x, t) + U(x, t)
U(x, t) w(x, t)
U(x, t) = α(t)x + [β(t) − α(t)]
x
2
2l
w
′
x
(0, t) = u
′
x
(0, t) − U
′
x
(0, t) = α(t) − α(t) = 0,
w
′
x
(l, t) = u
′
x
(l, t) − U
′
x
(l, t) = β(t) − β(t) = 0,
w(x, t)
f
b
(x) = f(x) − α(0)x − [β(0) − α(0)]
x
2
2l
,
F
b
(x) = F (x) − α
′
(0)x − [β
′
(0) − α
′
(0)]
x
2
2l
,
G
b
(x, t) = G(x, t) − α
′′
(t)x − [β
′′
(t) − α
′′
(t)]
x
2
2l
.
w(x, t)
G
b
∂
2
w
∂t
2
− v
2
∂
2
w
∂x
2
= G
b
.
w(x, 0) = f
b
(x),
w
′
t
(x, 0) = F
b
(x),
óíêöèÿ w(x, t). Ïîëó÷àåì 2.9 Âûíóæäåííûå êîëåáàíèÿ ñòðóíû êîíå÷íîé äëèíû.
Íåîäíîðîäíûå ãðàíè÷íûå óñëîâèÿ (3b).
x
w(x, 0) = u(x, 0) − U (x, 0) = f (x) − φ(0) − [ψ(0) − φ(0)] ,
l
x Ñäåëàåì çàìåíó èñêîìîé óíêöèè
wt′ (x, 0) = u′t (x, 0) − Ut′ (x, 0) = F (x) − φ′ (0) − [ψ ′ (0) − φ′ (0)] .
l
u(x, t) = w(x, t) + U (x, t)
Íîâàÿ óíêöèÿ w(x, t) óäîâëåòâîðÿåò óðàâíåíèþ êîëåáàíèÿ ñòðó-
íû, íî ñ èçìåíåííîé âûíóæäàþùåé ñèëîé è ïîäáåðåì óíêöèþ U (x, t) òàê, ÷òîáû íîâàÿ óíêöèÿ w(x, t) óäî-
âëåòâîðÿëà áû îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì (2b). Ëåãêî âèäåòü,
∂2w ∂2w ÷òî óíêöèÿ
− v 2 2 = G − Utt′′ (x, t).
∂t 2 ∂x x2
U (x, t) = α(t)x + [β(t) − α(t)]
2l
Îáîçíà÷èì
óäîâëåòâîðÿåò òðåáóåìûì óñëîâèÿì. Äåéñòâèòåëüíî
x
fa (x) = f (x) − φ(0) − [ψ(0) − φ(0)] ,
l wx′ (0, t) = u′x (0, t) − Ux′ (0, t) = α(t) − α(t) = 0,
′ ′ x
′
Fa (x) = F (x) − φ (0) − [ψ (0) − φ (0)] , wx′ (l, t) = u′x (l, t) − Ux′ (l, t) = β(t) − β(t) = 0,
l
x
ò.å. óíêöèÿ w(x, t) óäîâëåòâîðÿåò îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì
′′ ′′ ′′
Ga (x, t) = G(x, t) − φ (t) − [ψ (t) − φ (t)] .
l
(2b).
Òàêèì îáðàçîì, óíêöèÿ w(x, t) óäîâëåòâîðÿåò óðàâíåíèþ êîëåáà- Îáîçíà÷èì
íèÿ ñòðóíû ñ ïëîòíîñòüþ âûíóæäàþùåé ñèëû Ga
x2
2 2 fb (x) = f (x) − α(0)x − [β(0) − α(0)] ,
∂ w ∂ w 2l
− v 2 2 = Ga .
∂t 2 ∂x x2
Fb (x) = F (x) − α′ (0)x − [β ′ (0) − α′ (0)] ,
2l
åøåíèå óäîâëåòâîðÿåò ñëåäóþùèì íà÷àëüíûì óñëîâèÿì:
x2
Gb (x, t) = G(x, t) − α′′ (t)x − [β ′′ (t) − α′′ (t)] .
w(x, 0) = fa (x), 2l
wt′ (x, 0) = Fa (x), Òàêèì îáðàçîì, óíêöèÿ w(x, t) óäîâëåòâîðÿåò óðàâíåíèþ êîëå-
áàíèÿ ñòðóíû ñ ïëîòíîñòüþ âûíóæäàþùåé ñèëû Gb
è îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì
∂2w 2
2∂ w
w(0, t) = 0, w(l, t) = 0. (40) − v = Gb .
∂t2 ∂x2
Ïîýòîìó äîñòàòî÷íî ðåøèòü çàäà÷ó ñ îäíîðîäíûìè ãðàíè÷íûìè óñ- åøåíèå óäîâëåòâîðÿåò ñëåäóþùèì íà÷àëüíûì óñëîâèÿì:
ëîâèÿìè (40), ïîëó÷èòü âûðàæåíèå äëÿ w(x, t), à çàòåì ïî îðìóëå
(39) âû÷èñëèòü èñêîìóþ óíêöèþ u(x, t). w(x, 0) = fb (x),
wt′ (x, 0) = Fb (x),
29 30
Страницы
- « первая
- ‹ предыдущая
- …
- 13
- 14
- 15
- 16
- 17
- …
- следующая ›
- последняя »
