Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 12 стр.

UptoLike

Составители: 

M
1
M
2
M
1
(2, 3, 1), M
2
(4, 6, 9)
M
1
(7, 1, 2), M
2
(5, 1, 4)
M
1
(1, 5, 1), M
2
(1, 5, 1)
1)
(
x 2y + 4z = 0
3x 2y + 5z = 0 ,
2)
(
x + y z + 5 = 0
2x y + 2z 2 = 0 .
A(5, 8, 15) B(1, 1, 3)
C(5, 7, 1) D(0,
1
2
, 0) E(0, 0, 1)
x = 1 + 2t, y = 2 + 3t, z = 3 + 6t.
x = 3 2t, y = 1 + t, z = t.
1)
x = 1 + 2t
y = 7 + t
z = 3 + 4t ,
x = 6 + 3t
y = 1 2t
z = 2 + t ;
2)
x = 1 + 2t
y = 2 2t
z = t ,
x = 2t
y = 1 + 3t
z = 4 ;
                                   ÇÀÄÀ×È
   34. Ñîñòàâèòü óðàâíåíèå ïðÿìîé M1 M2 â êàæäîì èç ñëåäóþùèõ
ñëó÷àåâ:
1) M1 (2, 3, 1), M2 (4, 6, 9);
2) M1 (7, −1, 2), M2 (5, −1, 4);
3) M1 (1, 5, 1), M2 (1, −5, 1).
   35. Ñîñòàâèòü ïàðàìåòðè÷åñêèå óðàâíåíèÿ ïðÿìûõ
            (                              (
       1)        x − 2y + 4z = 0      2)         x+y−z+5 = 0
                3x − 2y + 5z = 0 ,             2x − y + 2z − 2 = 0 .

   36. Óñòàíîâèòü, êàêèå èç ñëåäóþùèõ òî÷åê A(5, 8, 15), B(−1, −1, −3),
C(5, 7, 1), D(0, 12 , 0), E(0, 0, 1) ëåæàò íà ïðÿìîé

                     x = 1 + 2t, y = 2 + 3t, z = 3 + 6t.

   37. Ñîñòàâèòü óðàâíåíèå ïëîñêîñòè, ïðîõîäÿùåé ÷åðåç íà÷àëî êî-
îðäèíàò è ÷åðåç ïðÿìóþ

                        x = 3 − 2t, y = 1 + t, z = t.

   38. Óñòàíîâèòü, êàêèå èç ñëåäóþùèõ ïàð ïðÿìûõ ñêðåùèâàþòñÿ,
ïàðàëëåëüíû, ïåðåñåêàþòñÿ èëè ñîâïàäàþò; åñëè ïðÿìûå ïàðàëëåëü-
íû, íàïèñàòü óðàâíåíèå ïëîñêîñòè ÷åðåç íèõ ïðîõîäÿùåé; åñëè ïðÿìûå
ïåðåñåêàþòñÿ, íàïèñàòü óðàâíåíèå ñîäåðæàùåé èõ ïëîñêîñòè è íàéòè
èõ îáùóþ òî÷êó.
                      
       
    1)                
        x = 1 + 2t     x = 6 + 3t
                       
         y = 7+t         y = −1 − 2t
       
                      
                       
        z = 3 + 4t ,   z = −2 + t ;
                     
    2) 
        x = 1 + 2t
                     
                       x = −2t
                      
         y = 2 − 2t     y = −1 + 3t
       
                     
                      
        z = −t ,      z = 4;

                                     12