Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 13 стр.

UptoLike

Составители: 

3)
x = 2 + 4t
y = 6t
z = 1 8t ,
x = 7 6t
y = 2 + 9t
z = 12t ;
4)
x = 1 + 9t
y = 2 + 6t
z = 3 + 3t ,
x = 7 + 6t
y = 6 + 4t
z = 5 + 2t .
1)
x12
4
=
y9
3
=
z1
1
, 3x + 5y z 2 = 0 ;
2)
x+1
2
=
y3
4
=
z
3
, 3x 3y + 2z 5 = 0 ;
3)
x13
8
=
y1
2
=
z4
3
, x + 2y 4z + 1 = 0 ;
4)
x7
5
=
y4
1
=
z5
4
, 3x y + 2z 5 = 0 .
x
2
=
y1
1
=
z3
1
x + y + z 10 = 0
(
x 3y + z = 0
x + y z + 4 = 0
x = 3 + t
y = 1 + 2t
z = 4t ,
x = 2 + 3t
y = 1
z = 4 t .
                                 
     3) 
         x = 2 + 4t
                                 
                                   x = 7 − 6t
                                  
          y = −6t          y = 2 + 9t
        
                        
                         
         z = −1 − 8t ,   z = 12t ;
                       
        
     4)                
         x = 1 + 9t     x = 7 + 6t
                        
          y = 2 + 6t      y = 6 + 4t
        
                       
                        
         z = 3 + 3t ,   z = 5 + 2t .

     39. Óñòàíîâèòü â êàæäîì èç ñëåäóþùèõ ñëó÷àåâ, ëåæèò ëè äàííàÿ
ïðÿìàÿ â äàííîé ïëîñêîñòè, ïàðàëëåëüíà ïëîñêîñòè èëè ïåðåñåêàåò åå;
â ïîñëåäíåì ñëó÷àå íàéòè òî÷êó ïåðåñå÷åíèÿ ïðÿìîé è ïëîñêîñòè.
     x−12  y−9   z−1
1)     4 = 3 = 1 ,      3x + 5y − z − 2 = 0 ;
     x+1  y−3  z
2)    2 = 4 = 3 ,    3x − 3y + 2z − 5 = 0 ;
     x−13  y−1   z−4
3)     8 = 2 = 3 ,      x + 2y − 4z + 1 = 0 ;
     x−7  y−4  z−5
4)    5 = 1 = 4 ,      3x − y + 2z − 5 = 0 .
     40. Íàéòè òî÷êó âñòðå÷è ïðÿìîé x2 = y−1  −1     =   z−3
                                                          1    ñ ïëîñêîñòüþ
x + y + z − 10 = 0.
     41. Ñîñòàâèòü óðàâíåíèå ïðÿìîé, êîëëèíåàðíîé ïðÿìîé
                           (
                                  x − 3y + z = 0
                                 x+y−z+4 = 0

è ïåðåñåêàþùåé äâå ïðÿìûå
                                          
                                          
                    x = 3+t
                                           x = −2 + 3t
                                           
                     y = −1 + 2t             y = −1
                   
                                          
                                           
                    z = 4t ,               z = 4−t .

                          
     42. Óñòàíîâèòü, êàêèå èç ñëåäóþùèõ òî÷åê ëåæàò íà îäíîé ïðÿìîé:
1) (3,0,1), (0,2,4), (-3,4,7);
2) (1,2,3), (10,8,4), (3,0,2);
3) (2,6,4), (5,7,1), (5,7,1).


                                      13