Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 15 стр.

UptoLike

Составители: 

4)
(
3x + y 2z 6 = 0
x 2y + 5z 1 = 0 ,
(
41x 19y + 52z 68 = 0
33x + 4y 5z 63 = 0 .
1)
x = 9t
y = 5t
z = 3 + t ,
(
2x 3y 3z 9 = 0
x 2y + z + 3 = 0 ;
2)
x = t
y = 8 4t
z = 3 3t ,
(
x + y z = 0
2x y + 2z = 0 ;
3)
x = 3 + t
y = 1 + 2t
z = 4 ,
(
x 3y + z = 0
x + y z + 4 = 0 ;
4)
x = 2 + 3t
y = 1
z = 4 t ,
(
2y z + 2 = 0
x 7y + 3z 17 = 0 .
1)
(
3x + 5y 7z + 16 = 0
2x y + z 6 = 0 ,
5x z 4 = 0 ;
2)
(
2x + 3y + 6z 10 = 0
x + y + z + 5 = 0 ,
y + 4z + 17 = 0 ;
3)
(
x + 2y + 3z + 8 = 0
5x + 3y + z 16 = 0 ,
2x y 4z 24 = 0 ;
(2, 3, 1)
        (                              (
   4)       3x + y − 2z − 6 = 0             41x − 19y + 52z − 68 = 0
            x − 2y + 5z − 1 = 0 ,             33x + 4y − 5z − 63 = 0 .
  47.
      
   1) 
       x = 9t
                           (
                                2x − 3y − 3z − 9 = 0
        y = 5t
      
                                   x − 2y + z + 3 = 0 ;
       z = −3 + t ,
      
   2) 
      x = t
                            (
                                     x+y−z = 0
        y = −8 − 4t
      
                                 2x − y + 2z = 0 ;
       z = −3 − 3t ,
      
   3) 
       x = 3+t
                           (
                                    x − 3y + z = 0
            y = −1 + 2t
      
                               x+y−z+4 = 0 ;
       z = 4,
      
   4) 
       x = −2 + 3t
                           (
                                          2y − z + 2 = 0
            y = −1
        
                               x − 7y + 3z − 17 = 0 .
         z = 4−t ,

  48.
Óñòàíîâèòü â êàæäîì èç ñëåäóþùèõ ñëó÷àåâ, ëåæèò ëè äàííàÿ ïðÿ-
ìàÿ â äàííîé ïëîñêîñòè, ïàðàëëåëüíà ïëîñêîñòè èëè ïåðåñåêàåò åå; â
ïîñëåäíåì ñëó÷àå íàéòè òî÷êó ïåðåñå÷åíèÿ ïðÿìîé è ïëîñêîñòè.
        (
   1)       3x + 5y − 7z + 16 = 0
                                           5x − z − 4 = 0 ;
               2x − y + z − 6 = 0 ,
        (
   2)       2x + 3y + 6z − 10 = 0
                                           y + 4z + 17 = 0 ;
                x+y+z+5 = 0 ,
        (
   3)        x + 2y + 3z + 8 = 0
                                          2x − y − 4z − 24 = 0 ;
            5x + 3y + z − 16 = 0 ,
  49. Ñîñòàâèòü óðàâíåíèå ïðÿìîé, ïðîõîäÿùåé ÷åðåç òî÷êó (2, 3, 1)

                                     15