Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 17 стр.

UptoLike

Составители: 

x = x
1
+ l
1
t
y = y
1
+ m
1
t
z = z
1
+ n
1
t
x = x
2
+ l
2
t
y = y
2
+ m
2
t
z = z
2
+ n
2
t
cos ϕ = ±
l
1
l
2
+ m
1
m
2
+ n
1
n
2
p
l
2
1
+ m
2
1
+ n
2
1
p
l
2
2
+ m
2
2
+ n
2
2
.
d M
0
(x
0
, y
0
, z
0
)
x x
1
l
=
y y
1
m
=
z z
1
n
d =
v
u
u
t
¯
¯
¯
¯
¯
y
1
y
0
z
1
z
0
m n
¯
¯
¯
¯
¯
2
+
¯
¯
¯
¯
¯
z
1
z
0
x
1
x
0
n l
¯
¯
¯
¯
¯
2
+
¯
¯
¯
¯
¯
x
1
x
0
y
1
y
0
l m
¯
¯
¯
¯
¯
2
l
2
+ m
2
+ n
2
.
x = x
1
+ l
1
t
y = y
1
+ m
1
t
z = z
1
+ n
1
t
x = x
2
+ l
2
t
y = y
2
+ m
2
t
z = z
2
+ n
2
t
d =
mod
¯
¯
¯
¯
¯
¯
¯
¯
x
2
x
1
y
2
y
1
z
2
z
1
l
1
m
1
n
1
l
2
m
2
n
2
¯
¯
¯
¯
¯
¯
¯
¯
v
u
u
t
¯
¯
¯
¯
¯
m
1
n
1
m
2
n
2
¯
¯
¯
¯
¯
2
+
¯
¯
¯
¯
¯
n
1
l
1
n
2
l
2
¯
¯
¯
¯
¯
2
+
¯
¯
¯
¯
¯
l
1
m
1
l
2
m
2
¯
¯
¯
¯
¯
2
.
x x
0
l
=
y y
0
m
=
z z
0
n
  Óãëû ìåæäó äâóìÿ ïðÿìûìè
                                        
                                        
               x = x1 + l 1 t
                                         x = x2 + l2 t
                                         
                y = y1 + m1 t              y = y2 + m2 t
              
                                        
                                         
               z = z +n t                z = z +n t
                     1      1                   2     2

â ïðÿìîóãîëüíîé ñèñòåìå êîîðäèíàò îïðåäåëÿåòñÿ ñîîòíîøåíèÿìè:
                                l1 l2 + m1 m2 + n1 n2
              cos ϕ = ± p                  p                .
                            l12 + m21 + n21 l22 + m22 + n22
  Ðàññòîÿíèå d îò òî÷êè M0 (x0 , y0 , z0 ) äî ïðÿìîé
                      x − x1   y − y1   z − z1
                             =        =
                         l       m        n
îïðåäåëÿåòñÿ â ïðÿìîóãîëüíîé ñèñòåìå êîîðäèíàò ñîîòíîøåíèåì
     v¯                   ¯2 ¯                    ¯2 ¯               ¯2
     u¯                   ¯  ¯ z −z x −x          ¯  ¯ x −x y −y     ¯
     u¯ y1 − y0 z1 − z0   ¯  ¯ 1                  ¯  ¯ 1             ¯
     t¯                   ¯ +¯
                                     0   1    0
                                                  ¯ +¯
                                                           0 1   0
                                                                     ¯
      ¯ m          n      ¯  ¯    n        l      ¯  ¯   l     m     ¯
d=                             √                                          .
                                 l2 + m2 + n2
  Êðàò÷àéøåå ðàññòîÿíèå ìåæäó äâóìÿ ñêðåùèâàþùèìèñÿ ïðÿìûìè
                                        
                                        
               x = x1 + l 1 t
                                         x = x2 + l2 t
                                         
                y = y1 + m1 t              y = y2 + m2 t
              
                                        
                                         
               z = z +n t                z = z +n t
                     1    1                     2     2

â ïðÿìîóãîëüíîé ñèñòåìå êîîðäèíàò îïðåäåëÿåòñÿ ñîîòíîøåíèåì
                         ¯                         ¯
                         ¯                         ¯
                         ¯ x2 − x1 y2 − y1 z2 − z1 ¯
                         ¯                         ¯
                    mod ¯¯    l1     m1        n1 ¯¯
                         ¯                         ¯
                         ¯    l2     m2        n2 ¯
             d = v¯          ¯2 ¯        ¯   ¯             ¯2 .
                 u¯              ¯ n l ¯2 ¯ l m
                 u¯ m1 n1 ¯¯     ¯ 1 1¯      ¯ 1
                                                           ¯
                                                           ¯
                 t¯          ¯ +¯        ¯ +¯
                                                    1
                                                           ¯
                  ¯ m2 n2 ¯      ¯ n2 l2 ¯   ¯ l2 m2       ¯

  Óãîë ìåæäó ïðÿìîé
                      x − x0   y − y0   z − z0
                             =        =
                         l       m        n
                                    17