Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 20 стр.

UptoLike

Составители: 

3x + 5y 4z + 1 = 0 x z 5 = 0
x 1
3
=
y + 2
6
=
z 5
2
x
2
=
y 3
9
=
z + 1
6
.
x = 5 + 6t, y = 1 3t, z = 2 + t
7x + 2y 3z + 5 = 0
Oxy
5x + 8y 3z + 9 = 0, 2x 4y + z 1 = 0
x3
5
=
y4
6
=
z6
8
6xy+3z41 = 0
x =
1 + 2t, y = 2 + 4t, z = 3 + 5t
x + y + z 1 = 0
y = 1, z + 1 = 0
x = t, y = 1 2t, z = 3 + t
x + y z + 2 = 0, 4x 3z + 3 = 0
1)
x = 3 + 2t
y = 1 t
z = 2 + 2t
x = t
y = 2 + 3t
z = 3t ;
2)
(
x + y z + 1 = 0
x + y = 0
(
x 2y + 3z 6 = 0
2x y + 3z 6 = 0 ;
     70. Ñîñòàâèòü óðàâíåíèå áèññåêòîðíîé ïëîñêîñòè òîãî óãëà ìåæäó
ïëîñêîñòÿìè 3x + 5y − 4z + 1 = 0 è x − z − 5 = 0 â êîòîðîì ëåæèò
íà÷àëî êîîðäèíàò.
     71. Îïðåäåëèòü óãîë, îáðàçîâàííûé ïðÿìûìè
                x−1 y+2 z−5              x y−3 z+1
                   =   =            è      =   =   .
                 3   6   2               2   9   6
     72. Íàéòè óãîë ìåæäó ïðÿìîé x = 5 + 6t, y = 1 − 3t, z = 2 + t è
ïëîñêîñòüþ 7x + 2y − 3z + 5 = 0.
     73. Íàéòè ïðîåêöèþ ïðÿìîé íà ïëîñêîñòü Oxy â êàæäîì èç ñëå-
äóþùèõ ñëó÷àåâ:
1) 5x + 8y − 3z + 9 = 0, 2x − 4y + z − 1 = 0;
     x−3       y−4       z−6
2)   −5    =    6    =    8 .
     74. Íàéòè ïðîåêöèþ òî÷êè (1,2,-3) íà ïëîñêîñòü 6x−y+3z−41 = 0.
     75. Íàéòè òî÷êó, ñèììåòðè÷íóþ äàííîé îòíîñèòåëüíî ïðÿìîé x =
1 + 2t, y = 2 + 4t, z = 3 + 5t.
     76. Ïðîâåñòè ÷åðåç òî÷êó ïåðåñå÷åíèÿ ïëîñêîñòè x + y + z − 1 = 0
ñ ïðÿìîé y = 1, z + 1 = 0 ïðÿìóþ, ëåæàùóþ â ýòîé ïëîñêîñòè è
ïåðïåíäèêóëÿðíóþ ê äàííîé ïðÿìîé.
     77. Íàéòè ðàññòîÿíèå îò òî÷êè (1,2,5) äî êàæäîé èç ñëåäóþùèõ
ïðÿìûõ:
1) x = t, y = 1 − 2t, z = 3 + t;
2) x + y − z + 2 = 0, 4x − 3z + 3 = 0.
     78. Íàéòè êðàò÷àéøåå ðàññòîÿíèå ìåæäó äâóìÿ ïðÿìûìè:

                       
         x = 3 + 2t    
     1)
        
                        x = −t
                        
          y = 1−t    è    y = 2 + 3t
        
                       
                        
         z = 2 + 2t     z = 3t ;
        (                    (
     2)   x+y−z+1 = 0          x − 2y + 3z − 6 = 0
                          è
                x+y = 0        2x − y + 3z − 6 = 0 ;

                                   20