Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 52 стр.

UptoLike

Составители: 

O
0
2
(b
1
2
0
: b
2
2
0
: b
3
2
0
) O
0
3
(b
1
3
0
: b
2
3
0
: b
3
3
0
) E
0
(c
1
: c
2
: c
3
)
x
1
= b
1
1
0
ρ
1
0
x
1
0
+ b
1
2
0
ρ
2
0
x
2
0
+ b
1
3
0
ρ
3
0
x
3
0
x
2
= b
2
1
0
ρ
1
0
x
1
0
+ b
2
2
0
ρ
2
0
x
2
0
+ b
2
3
0
ρ
3
0
x
3
0
x
3
= b
3
1
0
ρ
1
0
x
1
0
+ b
3
2
0
ρ
2
0
x
2
0
+ b
3
3
0
ρ
3
0
x
3
0
,
ρ
1
0
ρ
2
0
ρ
3
0
b
1
1
0
ρ
1
0
+ b
1
2
0
ρ
2
0
+ b
1
3
0
ρ
3
0
= c
1
b
2
1
0
ρ
1
0
+ b
2
2
0
ρ
2
0
+ b
2
3
0
ρ
3
0
= c
2
b
3
1
0
ρ
1
0
+ b
3
2
0
ρ
2
0
+ b
3
3
0
ρ
3
0
= c
3
.
x
1
0
= a
1
0
1
x
1
+ a
1
0
2
x
2
+ a
1
0
3
x
3
x
2
0
= a
2
0
1
x
1
+ a
2
0
2
x
2
+ a
2
0
3
x
3
x
3
0
= a
3
0
1
x
1
+ a
3
0
2
x
2
+ a
3
0
3
x
3
,
¯
¯
¯
¯
¯
¯
¯
¯
a
1
0
1
a
1
0
2
a
1
0
3
a
2
0
1
a
2
0
2
a
2
0
3
a
3
0
1
a
3
0
2
a
3
0
3
¯
¯
¯
¯
¯
¯
¯
¯
6= 0 .
x
0
=
a
1
0
1
x + a
1
0
2
y + a
1
0
3
a
3
0
1
x + a
3
0
2
y + a
3
0
3
, y
0
=
a
2
0
1
x + a
2
0
2
y + a
2
0
3
a
3
0
1
x + a
3
0
2
y + a
3
0
3
.
A(a
1
: a
2
: a
3
) 7→ A
0
(a
1
0
: a
2
0
: a
3
0
) ,
B(b
1
: b
2
: b
3
) 7→ B
0
(b
1
0
: b
2
0
: b
3
0
) ,
C(c
1
: c
2
: c
3
) 7→ C
0
(c
1
0
: c
2
0
: c
3
0
) ,
O20 (b120 : b220 : b320 ), O30 (b130 : b230 : b330 ), E 0 (c1 : c2 : c3 ), îïðåäåëÿåòñÿ ñîîòíî-
øåíèÿìè:                  
                          
                           x 1
                                = b 1 10 10
                                      0ρ x   + b 1 20 20
                                                  0ρ x    + b 1 30 30
                                                              30 ρ x
                                   1            2
                                         0 0         0  0          0  0
                            x2 = b210 ρ1 x1 + b220 ρ2 x2 + b230 ρ3 x3
                          
                          
                           x3 = b3 ρ10 x10 + b3 ρ20 x20 + b3 ρ30 x30 ,
                                    10           20           30
       0     0        0
ãäå ρ1 , ρ2 , ρ3 îïðåäåëÿþòñÿ èç ñèñòåìû óðàâíåíèé:
                                 
                                    1 10      1 20      1 30     1
                                  b10 ρ + b20 ρ + b30 ρ = c
                                 
                                          0         0         0
                                   b210 ρ1 + b220 ρ2 + b230 ρ3 = c2
                                 
                                 
                                  b3 ρ10 + b3 ρ20 + b3 ρ30 = c3 .
                                     10        20        30

   Ïðîåêòèâíûì ïðåîáðàçîâàíèåì ìíîæåñòâà òî÷åê ïðîåêòèâíîé ïëîñ-
êîñòè íàçûâàåòñÿ òàêîå âçàèìíî-îäíîçíà÷íîå ïðåîáðàçîâàíèå, ïðè êî-
òîðîì ëþáûå òðè òî÷êè, ëåæàùèå íà îäíîé ïðÿìîé, ïåðåõîäÿò â òðè
òî÷êè, òàêæå ëåæàùèå íà îäíîé ïðÿìîé.
   Ïðè ïðîåêòèâíîì ïðåîáðàçîâàíèè àíãàðìîíè÷åñêîå îòíîøåíèå ÷å-
òûðåõ òî÷åê, ëåæàùèõ íà îäíîé ïðÿìîé, íå èçìåíÿåòñÿ.
   Ïðîåêòèâíîå ïðåîáðàçîâàíèå îïðåäåëÿåòñÿ ñîîòíîøåíèÿìè:
       0                                                                  ¯ 0          ¯
        1   10 1   10 2   10 3                                            ¯ 1 10 10 ¯
       x = a1 x + a2 x + a3 x
                                                                          ¯ a1 a2 a3 ¯
                                                                           ¯ 0          ¯
             0              0
           x2 = a21 x1 + a22 x2 + a23 x3
                                           0       0
                                                                 ãäå       ¯ a2 a20 a20 ¯ =
                                                                          ¯ 1 2 3 ¯6 0.
      
       x30 = a30 x1 + a30 x2 + a30 x3 ,                                   ¯ 30 30 30 ¯
               1        2        3
                                                                           ¯ a1 a2 a3 ¯

   Ôîðìóëû ïðîåêòèâíîãî ïðåîáðàçîâàíèÿ ñîáñòâåííûõ òî÷åê ïðîåê-
òèâíîé ïëîñêîñòè â àôôèííûõ êîîðäèíàòàõ ïðèíèìàþò âèä:
                            0          0       0                       0             0   0
                    a1 x + a12 y + a13                         a2 x + a22 y + a23
                 x = 130
                  0
                              0        0 ,                  y = 310
                                                             0
                                                                         0        0 .
                    a1 x + a32 y + a33                         a1 x + a32 y + a33
   Ïóñòü çàäàíû ÷åòûðå ïàðû ñîîòâåòñòâåííûõ òî÷åê:
                                                                 0     0         0
                                A(a1 : a2 : a3 ) 7→ A0 (a1 : a2 : a3 ) ,
                                                                 0     0     0
                                B(b1 : b2 : b3 ) 7→ B 0 (b1 : b2 : b3 ) ,
                                                                 0     0     0
                                C(c1 : c2 : c3 ) 7→ C 0 (c1 : c2 : c3 ) ,

                                                       52