Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 53 стр.

UptoLike

Составители: 

D(d
1
: d
2
: d
3
) 7→ D
0
(d
1
0
: d
2
0
: d
3
0
) .
u = 0, v = 0, w = 0, u
0
= 0, v
0
= 0, w
0
= 0
BC, CA, AB, B
0
C
0
, C
0
A
0
, A
0
B
0
u
0
= pu
v
0
= qv
w
0
= rw
A, B, C
A
0
, B
0
, C
0
D
0
D
p, q, r
a
11
(x
1
)
2
+ a
22
(x
2
)
2
+ a
33
(x
3
)
2
+ 2a
12
x
1
x
2
+ 2a
13
x
1
x
3
+ 2a
23
x
2
x
3
= 0 .
(x
1
)
2
+ (x
2
)
2
+ (x
3
)
2
= 0
(x
1
)
2
+ (x
2
)
2
(x
3
)
2
= 0
(x
1
)
2
(x
2
)
2
= 0
(x
1
)
2
+ (x
2
)
2
= 0
(x
1
)
2
= 0
A(1 : 1 : 2) B(3 : 1 : 2) C(11 : 1 : 10)
D(3 : 7 : 10)
(ABCD)
                                                0    0    0
                    D(d1 : d2 : d3 ) 7→ D0 (d1 : d2 : d3 ) .

Ïóñòü u = 0, v = 0, w = 0, u0 = 0, v 0 = 0, w0 = 0  óðàâíåíèÿ
ïðÿìûõ BC, CA, AB, B 0 C 0 , C 0 A0 , A0 B 0 ; òîãäà óðàâíåíèÿ
                                 
                                   0
                                  u = pu
                                 
                                   v 0 = qv
                                 
                                 
                                  w0 = rw

îïðåäåëÿþò ïðîåêòèâíîå ïðåîáðàçîâàíèå, ïåðåâîäÿùåå òî÷êè A, B, C
ñîîòâåòñòâåííî â òî÷êè A0 , B 0 , C 0 . Ïîäñòàâëÿÿ â ëåâûå ÷àñòè ýòèõ
óðàâíåíèé êîîðäèíàòû òî÷êè D0 , à â ïðàâûå  êîîðäèíàòû D, íàéäåì
p, q, r.
   Îáùåå óðàâíåíèå ëèíèè âòîðîãî ïîðÿäêà â ïðîåêòèâíûõ êîîðäèíà-
òàõ èìååò âèä:

 a11 (x1 )2 + a22 (x2 )2 + a33 (x3 )2 + 2a12 x1 x2 + 2a13 x1 x3 + 2a23 x2 x3 = 0 .

   Ïðåîáðàçîâàíèåì ïðîåêòèâíîé ñèñòåìû êîîðäèíàò ýòî óðàâíåíèå
ìîæåò áûòü ïðèâåäåíî ê îäíîìó èç ñëåäóþùèõ âèäîâ:

  1.    (x1 )2 + (x2 )2 + (x3 )2 = 0  ìíèìàÿ ëèíèÿ;

  2.    (x1 )2 + (x2 )2 − (x3 )2 = 0  äåéñòâèòåëüíàÿ ëèíèÿ;

  3.    (x1 )2 − (x2 )2 = 0  äâå äåéñòâèòåëüíûå ïåðåñåêàþùèåñÿ ïðÿ-
       ìûå;

  4.    (x1 )2 + (x2 )2 = 0  äâå ìíèìûå ïåðåñåêàþùèåñÿ ïðÿìûå;

  5.    (x1 )2 = 0  äâå ñîâïàäàþùèå ïðÿìûå.

                                  ÇÀÄÀ×È
   188. Äàíû òî÷êè A(1 : 1 : 2), B(3 : −1 : 2), C(11 : −1 : 10),
D(3 : 7 : 10). Äîêàçàòü, ÷òî îíè ëåæàò íà îäíîé ïðÿìîé. Íàéòè àíãàð-
ìîíè÷åñêîå îòíîøåíèå (ABCD).

                                        53