Интегральное исчисление функции одной переменной. - 17 стр.

UptoLike

§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 17
ðÏÌÁÇÁÅÍ t =
3
q
x+1
x1
, x =
t
3
+1
t
3
1
, dx =
6t
2
(t
3
1)
2
dt, ÔÏÇÄÁ
Z
1
x + 1
3
r
x + 1
x 1
dx =
Z
3 dt
t
3
1
=
Z
1
t 1
+
t + 2
t
2
+ t + 1
dt =
=
1
2
ln
t
2
+ t + 1
(t 1)
2
+
3 arctg
2t 1
3
+ C,
ÇÄÅ t =
3
q
x+1
x1
.
II. éÎÔÅÇÒÉÒÏ×ÁÎÉÅ ×ÙÒÁÖÅÎÉÊ ×ÉÄÁ:
Z
Ax + B
ax
2
+ bx + c
dx. (3)
1) ðÕÓÔØ a > 0, ÔÏÇÄÁ ÉÎÔÅÇÒÁÌ (3) ÐÅÒÅÐÉÛÅÔÓÑ × ×ÉÄÅ
Z
Ax + B
a
q
x
2
+
b
a
x +
c
a
dx =
1
a
Z
Ax + B
p
x
2
+ px + q
dx.
ôÁË ÖÅ, ËÁË É × ÓÌÕÞÁÅ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ ÒÁÃÉÏÎÁÌØÎÏÊ ÆÕÎËÃÉÉ, ×ÙÄÅ-
ÌÉÍ ÐÏÌÎÙÊ Ë×ÁÄÒÁÔ × Ë×ÁÄÒÁÔÎÏÍ ÔÒÅÈÞÌÅÎÅ, ÓÔÏÑÝÅÍ × ÚÎÁÍÅÎÁÔÅÌÅ (ÓÍ.
ÐÕÎËÔ 1.4):
1
a
Z
Ax + B
q
x +
p
2
2
+ k
dx =
1
a
Z
A
x +
p
2
q
x +
p
2
2
+ k
dx+
+
1
a
Z
B A ·
p
2
q
x +
p
2
2
+ k
dx =
1
a
Z
At
t
2
+ k
dt +
1
a
Z
B A ·
p
2
t
2
+ k
dt,
ÇÄÅ t = x +
p
2
.
ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t
2
+ k
Z
t dt
t
2
+ k
=
1
2
Z
dt
2
t
2
+ k
=
1
2
Z
d(t
2
+ k)
t
2
+ k
=
1
2
Z
du
u
=
=
1
2
Z
u
1/2
du = u
1/2
+ C = (t
2
+ k)
1/2
+ C.
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ
R
dt
t
2
+k
Ñ×ÌÑÅÔÓÑ ÔÁÂÌÉÞÎÙÍ.
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .                                                      17
             q
                         t3 +1             6t2
ðÏÌÁÇÁÅÍ t = 3 x+1
               x−1 , x =  3
                         t −1  , dx = − (t −1)2 dt, ÔÏÇÄÁ
                                          3



               r                               Z                    
       1           x+1             −3 dt              1        t+2
  Z                           Z
               3
                       dx =               =       −       +             dt =
      x+1          x−1             t3 − 1           t − 1 t2 + t + 1
                                                1 t2 + t + 1 √             2t − 1
                                               = ln            +   3 arctg  √ + C,
                                                2     (t − 1)2                3
           q
ÇÄÅ t = 3 x+1
          x−1
              .
   II. éÎÔÅÇÒÉÒÏ×ÁÎÉÅ ×ÙÒÁÖÅÎÉÊ ×ÉÄÁ:
                              Ax + B
                          Z
                            √             dx.                                        (3)
                             ax2 + bx + c

   1) ðÕÓÔØ a > 0, ÔÏÇÄÁ ÉÎÔÅÇÒÁÌ (3) ÐÅÒÅÐÉÛÅÔÓÑ × ×ÉÄÅ

                     Ax + B             1      Ax + B
             Z                             Z
               √ q 2 b           dx = √      p             dx.
                  a x + ax+ a  c         a    x 2 + px + q



ôÁË ÖÅ, ËÁË É × ÓÌÕÞÁÅ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ ÒÁÃÉÏÎÁÌØÎÏÊ ÆÕÎËÃÉÉ, ×ÙÄÅ-
ÌÉÍ ÐÏÌÎÙÊ Ë×ÁÄÒÁÔ × Ë×ÁÄÒÁÔÎÏÍ ÔÒÅÈÞÌÅÎÅ, ÓÔÏÑÝÅÍ × ÚÎÁÍÅÎÁÔÅÌÅ (ÓÍ.
ÐÕÎËÔ 1.4):

                                        A x + p2
                                                  
  1          Ax + B              1
       Z                            Z
 √         q             dx = √       q               dx+
   a              p 2
                                 a           p 2
                                               
             x+ 2 +k                     x+ 2 +k
             1        B − A · p2         1         At         1    B − A · p2
                Z                           Z                    Z
           +√      q               dx = √      √        dt + √     √          dt,
              a           p 2
                                         a       t 2+k        a     t 2+k
                      x+ 2 +k

ÇÄÅ t = x + p2 .
   ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t2 + k

        t dt    1           dt2     1          d(t2 + k) 1        du
  Z                   Z                  Z                    Z
      √       =           √       =            √        =         √ =
       t2 + k   2          t2 + k   2            t 2+k    2        u
                                           1
                                               Z
                                       =         u−1/2 du = u1/2 + C = (t2 + k)1/2 + C.
                                           2
                          √ dt
                      R
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ            t2 +k
                                   Ñ×ÌÑÅÔÓÑ ÔÁÂÌÉÞÎÙÍ.