Интегральное исчисление функции одной переменной. - 18 стр.

UptoLike

18 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
2) ðÕÓÔØ a < 0, ÔÏÇÄÁ ÉÎÔÅÇÒÁÌ (3) ÐÅÒÅÐÉÛÅÔÓÑ × ×ÉÄÅ
Z
Ax + B
a
q
x
2
b
a
x
c
a
dx =
1
a
Z
Ax + B dx
p
x
2
px q
=
=
1
a
Z
Ax + B
p
(x
2
+ px + q)
dx.
äÁÌØÛÅ, ×ÙÄÅÌÑÑ ÐÏÌÎÙÊ Ë×ÁÄÒÁÔ × Ë×ÁÄÒÁÔÎÏÍ ÔÒÅÈÞÌÅÎÅ É ÐÒÉÍÅÎÑÑ ÚÁ-
ÍÅÎÕ t = x +
p
2
, ÔÁË ÖÅ ËÁË É × ÐÒÅÄÙÄÕÝÅÍ ÓÌÕÞÁÅ ×ÙÞÉÓÌÑÅÍ ÐÏÌÕÞÅÎÎÙÊ
ÉÎÔÅÇÒÁÌ.
ðÒÉÍÅÒ 27.
Z
5x 1
x
2
+ 2x + 2
dx =
Z
5x 1
p
(x + 1)
2
+ 1
dx =
Z
5(x + 1 1) 1
p
(x + 1)
2
+ 1
dx =
=
Z
5t 6
t
2
+ 1
dt = 5
Z
t dt
t
2
+ 1
6
Z
dt
t
2
+ 1
=
=
5
2
Z
d(t
2
+ 1)
t
2
+ 1
6 · ln |t +
p
t
2
+ 1| + C =
=
5
2
· 2(t
2
+ 1)
1/2
6 ln |t +
p
t
2
+ 1| + C = 5 · (x
2
+ 2x + 2)
1/2
6 ln |x + 1 +
p
x
2
+ 2x + 3| + C.
ðÒÉÍÅÒ 28.
Z
5x + 11
6x x
2
5
dx =
Z
5x + 11
p
(x
2
6x + 5)
dx =
=
Z
5x + 11
p
((x 3)
2
4)
dx =
Z
5(x 3 + 3) + 11
p
4 (x 3)
2
dx =
=
Z
5t + 26
4 t
2
dt = 5
Z
t
4 t
2
dt + 26
Z
dt
4 t
2
=
=
5
2
Z
dt
2
4 t
2
+ 26 arcsin
t
2
+ C =
5
2
Z
d(4 t
2
)
4 t
2
+
+ 26 arcsin
t
2
+ C = 5
p
4 t
2
+ 26 arcsin
t
2
+ C =
= 5
p
6x x
2
5 + 26 arcsin
x 3
2
+ C.
18                                             §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .

     2) ðÕÓÔØ a < 0, ÔÏÇÄÁ ÉÎÔÅÇÒÁÌ (3) ÐÅÒÅÐÉÛÅÔÓÑ × ×ÉÄÅ

          Ax + B                     1          Ax + B dx
 Z                                        Z
      √ q 2 b                  dx = √         p             =
       −a −x − a x −       c         −a        −x2 − px − q
                           a
                                                     1        Ax + B
                                                        Z
                                                 =√       p                dx.
                                                     −a     −(x2 + px + q)

äÁÌØÛÅ, ×ÙÄÅÌÑÑ ÐÏÌÎÙÊ Ë×ÁÄÒÁÔ × Ë×ÁÄÒÁÔÎÏÍ ÔÒÅÈÞÌÅÎÅ É ÐÒÉÍÅÎÑÑ ÚÁ-
ÍÅÎÕ t = x + p2 , ÔÁË ÖÅ ËÁË É × ÐÒÅÄÙÄÕÝÅÍ ÓÌÕÞÁÅ ×ÙÞÉÓÌÑÅÍ ÐÏÌÕÞÅÎÎÙÊ
ÉÎÔÅÇÒÁÌ.
  ðÒÉÍÅÒ 27.

        5x − 1                   5x − 1                 5(x + 1 − 1) − 1
 Z                        Z                         Z
      √            dx =     p                 dx =       p               dx =
       x2 + 2x + 2             (x + 1)2 + 1                (x + 1)2 + 1
                      5t − 6                t dt              dt
                  Z                  Z                  Z
               =     √        dt = 5 √             −6 √             =
                       t2 + 1              t2 + 1            t2 + 1
                    5 d(t2 + 1)
                      Z                           p
                  =        √        − 6 · ln |t + t2 + 1| + C =
                    2       t2 + 1
          5                          p
        = · 2(t + 1) − 6 ln |t + t2 + 1| + C = 5 · (x2 + 2x + 2)1/2−
                2     1/2
          2                                                     p
                                               − 6 ln |x + 1 + x2 + 2x + 3| + C.

     ðÒÉÍÅÒ 28.

        5x + 11                   5x + 11
 Z                        Z
      √             dx =     p                  dx =
       6x − x2 − 5              −(x2 − 6x + 5)
                        5x + 11                5(x − 3 + 3) + 11
               Z                            Z
            =      p                 dx =        p                dx =
                     −((x − 3)2 − 4)               4 − (x − 3)2
                    5t + 26               t                   dt
                 Z                 Z                    Z
             =      √        dt = 5 √           dt + 26 √            =
                      4 − t2            4 − t2              4 − t2
                5       dt2               t           5 d(4 − t2 )
                  Z                                     Z
             =       √        + 26 arcsin + C = −          √         +
                2      4 − t2             2           2       4 − t2
                           t           p                    t
              + 26 arcsin + C = −5 4 − t2 + 26 arcsin + C =
                           2                                2
                                           p                           x−3
                                     = −5 6x − x2 − 5 + 26 arcsin          + C.
                                                                        2