ВУЗ:
Рубрика:
20 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
IV. éÎÔÅÇÒÉÒÏ×ÁÎÉÅ ÄÉÆÆÅÒÅÎÃÉÁÌØÎÙÈ ÂÉÎÏÍÏ× ×ÉÄÁ:
Z
x
m
(a + bx
n
)
p
dx,
ÇÄÅ p =
α
β
; α, β ¡ ÃÅÌÙÅ ÞÉÓÌÁ; m, n ¡ ÐÒÏÉÚ×ÏÌØÎÙÅ ÞÉÓÌÁ.
äÁÎÎÙÊ ÉÎÔÅÇÒÁÌ ÉÎÔÅÇÒÉÒÕÅÔÓÑ ÌÉÛØ × ÓÌÅÄÕÀÝÉÈ ÔÒÅÈ ÓÌÕÞÁÑÈ:
1) ÅÓÌÉ p ÃÅÌÏÅ ÞÉÓÌÏ, ÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÁ
x = t
N
, ÇÄÅ N ¡ ÏÂÝÉÊ ÚÎÁÍÅÎÁÔÅÌØ ÄÒÏÂÅÊ m É n;
2) ÅÓÌÉ
m+1
n
ÃÅÌÏÅ ÞÉÓÌÏ, ÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÁ
a + bx
n
= t
β
;
3) ÅÓÌÉ
m+1
n
+ p ÃÅÌÏÅ ÞÉÓÌÏ, ÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÁ
a + bx
n
= x
n
t
β
.
ðÒÉÍÅÒ 30.
Z
x
3
√
x
2
− 1
dx,
ÇÄÅ m = 3, n = 2. þÉÓÌÏ
m+1
n
=
3+1
2
= 2 ¡ ÃÅÌÏÅ, ÐÏÜÔÏÍÕ ÉÓÐÏÌØÚÕÅÍ
ÐÏÄÓÔÁÎÏ×ËÕ (1): x
2
− 1 = t
2
, x =
√
t
2
+ 1, dx =
t
√
1+t
2
dt, ÏÔÓÀÄÁ
Z
x
3
√
x
2
− 1
dx =
Z
(1 + t
2
)
3/2
t
·
t
(t
2
+ 1)
1/2
dt =
Z
(1 + t
2
) dt =
= t +
t
3
3
+ C = (x
2
− 1)
1/2
+
(x
2
− 1)
3/2
3
+ C.
ðÒÉÍÅÒ 31.
Z
dx
4
√
1 + x
4
=
Z
x
0
(1 + x
4
)
−1/4
dx,
ÚÄÅÓØ m = 0, n = 4, p = −
1
4
. ðÒÏ×ÅÒÉÍ ÕÓÌÏ×ÉÅ:
m+1
n
+ p ¡ ÃÅÌÏÅ ÞÉÓÌÏ ÉÌÉ
ÎÏÌØ.
m+1
n
+p =
0+1
4
−
1
4
= 0, ÐÏÜÔÏÍÕ ÉÓÐÏÌØÚÕÅÍ ÐÏÄÓÔÁÎÏ×ËÕ (2); ÚÄÅÓØ β = 4:
1 + x
4
= x
4
· t
4
, t =
4
q
1
x
4
+ 1 =
4
√
1+x
4
x
, x = (t
4
−1)
−1/4
, dx = −t
3
(t
4
−1)
−5/4
dt,
ÔÁË ÞÔÏ
4
√
1 + x
4
= tx = t · (t
4
− 1)
−1/4
,
Z
dx
4
√
1 + x
4
= −
Z
t
2
dt
t
4
− 1
=
1
4
Z
1
t + 1
−
1
t − 1
dt −
1
2
Z
dt
t
2
+ 1
=
=
1
4
ln
t + 1
t − 1
−
1
2
arctg t + C,
ÇÄÅ t =
4
√
1+x
4
x
.
20 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
IV. éÎÔÅÇÒÉÒÏ×ÁÎÉÅ ÄÉÆÆÅÒÅÎÃÉÁÌØÎÙÈ ÂÉÎÏÍÏ× ×ÉÄÁ:
Z
xm(a + bxn )p dx,
ÇÄÅ p = αβ ; α, β ¡ ÃÅÌÙÅ ÞÉÓÌÁ; m, n ¡ ÐÒÏÉÚ×ÏÌØÎÙÅ ÞÉÓÌÁ.
äÁÎÎÙÊ ÉÎÔÅÇÒÁÌ ÉÎÔÅÇÒÉÒÕÅÔÓÑ ÌÉÛØ × ÓÌÅÄÕÀÝÉÈ ÔÒÅÈ ÓÌÕÞÁÑÈ:
1) ÅÓÌÉ p ÃÅÌÏÅ ÞÉÓÌÏ, ÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÁ
x = tN , ÇÄÅ N ¡ ÏÂÝÉÊ ÚÎÁÍÅÎÁÔÅÌØ ÄÒÏÂÅÊ m É n;
m+1
2) ÅÓÌÉ n ÃÅÌÏÅ ÞÉÓÌÏ, ÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÁ
a + bxn = tβ ;
m+1
3) ÅÓÌÉ n + p ÃÅÌÏÅ ÞÉÓÌÏ, ÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÁ
a + bxn = xn tβ .
ðÒÉÍÅÒ 30.
x3
Z
√ dx,
x2 − 1
ÇÄÅ m = 3, n = 2. þÉÓÌÏ m+1 = 3+1 = 2 ¡ ÃÅÌÏÅ, ÐÏÜÔÏÍÕ ÉÓÐÏÌØÚÕÅÍ
2 2
n √ 2 t
2
ÐÏÄÓÔÁÎÏ×ËÕ (1): x − 1 = t , x = t + 1, dx = √1+t dt, ÏÔÓÀÄÁ
2
x3 (1 + t2 )3/2 t
Z Z Z
√ dx = · 2 1/2
dt = (1 + t2 ) dt =
x2 − 1 t (t + 1)
t3 2 1/2 (x2 − 1)3/2
= t + + C = (x − 1) + + C.
3 3
ðÒÉÍÅÒ 31.
dx
Z Z
√
4
= x0(1 + x4)−1/4 dx,
1+x 4
ÚÄÅÓØ m = 0, n = 4, p = − 14 . ðÒÏ×ÅÒÉÍ ÕÓÌÏ×ÉÅ: m+1
n + p ¡ ÃÅÌÏÅ ÞÉÓÌÏ ÉÌÉ
m+1 0+1 1
ÎÏÌØ. n +p = 4 − q4 = 0, ÐÏÜÔÏÍÕ ÉÓÐÏÌØÚÕÅÍ ÐÏÄÓÔÁÎÏ×ËÕ (2); ÚÄÅÓØ β = 4:
√
4 4
1 + x4 = x4 · t4, t = 4 x14 + 1 = 1+x 4
x , x = (t − 1)
−1/4
, dx = −t3 (t4 − 1)−5/4 dt,
√
ÔÁË ÞÔÏ 4 1 + x4 = tx = t · (t4 − 1)−1/4,
Z 2 Z
dx t dt 1 1 1 1 dt
Z Z
√ =− = − dt − =
4
1 + x4 t4 − 1 4 t+1 t−1 2 t2 + 1
1 t+1 1
= ln − arctg t + C,
4 t−1 2
√
4
1+x4
ÇÄÅ t = x .
Страницы
- « первая
- ‹ предыдущая
- …
- 18
- 19
- 20
- 21
- 22
- …
- следующая ›
- последняя »
