Интегральное исчисление функции одной переменной. - 51 стр.

UptoLike

§3. îÅÓÏÂÓÔ×ÅÎÎÙÅ ÉÎÔÅÇÒÁÌÙ 51
ÆÕÎËÃÉÑ f(x) ÉÎÔÅÇÒÉÒÕÅÍÁ, ÔÏÇÄÁ
b
Z
a
f(x) dx = lim
ε
1
0
cε
1
Z
a
f(x) dx + lim
ε
2
0
b
Z
c+ε
2
f(x) dx. (4)
ðÒÉÍÅÒ 6.
0
R
1
dx
1x
2
, x = 1 ¡ ÏÓÏÂÁÑ ÔÏÞËÁ.
0
Z
1
dx
1 x
2
= lim
ε0
0
Z
1+ε
dx
1 x
2
= lim
ε0
arcsin x
0
1+ε
=
= lim
ε0
(arcsin 0 arcsin(1 + ε)) = arcsin(1) =
π
2
.
éÎÔÅÇÒÁÌ ÓÈÏÄÉÔÓÑ É ÅÇÏ ×ÅÌÉÞÉÎÁ ÒÁ×ÎÁ
π
2
.
ðÒÉÍÅÒ 7.
1
R
0
dx
1x
2
, x = 1 ¡ ÏÓÏÂÁÑ ÔÏÞËÁ.
1
Z
0
dx
1 x
2
= lim
ε0
1ε
Z
0
dx
1 x
2
=
= lim
ε0
arcsin x
1ε
0
= lim
ε0
(arcsin(1 ε) arcsin 0) =
π
2
.
éÎÔÅÇÒÁÌ ÓÈÏÄÉÔÓÑ É ÅÇÏ ×ÅÌÉÞÉÎÁ ÒÁ×ÎÁ
π
2
.
ðÒÉÍÅÒ 8.
8
R
1
dx
3
x
, x = 0 ¡ ÏÓÏÂÁÑ ÔÏÞËÁ.
8
Z
1
dx
3
x
=
0
Z
1
dx
3
x
+
8
Z
0
dx
3
x
= lim
ε
1
0
0ε
1
Z
1
dx
3
x
+
+ lim
ε
2
0
8
Z
0+ε
2
dx
3
x
= lim
ε
1
0
3
2
· x
2/3
ε
1
1
+ lim
ε
2
0
3
2
x
2/3
8
ε
2
=
=
3
2
(8
2/3
(1)
2/3
) =
3
2
· (4 1) =
9
2
.
§3. îÅÓÏÂÓÔ×ÅÎÎÙÅ ÉÎÔÅÇÒÁÌÙ                                                                          51

ÆÕÎËÃÉÑ f (x) ÉÎÔÅÇÒÉÒÕÅÍÁ, ÔÏÇÄÁ

                    Zb                          c−ε
                                                Z 1                           Zb
                         f (x) dx = lim              f (x) dx + lim                 f (x) dx.       (4)
                                        ε1 →0                           ε2 →0
                    a                           a                            c+ε2


                    R0
  ðÒÉÍÅÒ 6.              √ dx ,      x = −1 ¡ ÏÓÏÂÁÑ ÔÏÞËÁ.
                          1−x2
                    −1


 Z0                         Z0                                           0
        dx                             dx
      √      = lim                   √      = lim arcsin x                      =
       1 − x2 ε→0                     1 − x2 ε→0                         −1+ε
 −1                       −1+ε
                                                                                                   π
                                  = lim(arcsin 0 − arcsin(−1 + ε)) = − arcsin(−1) =                  .
                                      ε→0                                                          2
éÎÔÅÇÒÁÌ ÓÈÏÄÉÔÓÑ É ÅÇÏ ×ÅÌÉÞÉÎÁ ÒÁ×ÎÁ π2 .
              R1 dx
  ðÒÉÍÅÒ 7. √1−x2 , x = 1 ¡ ÏÓÏÂÁÑ ÔÏÞËÁ.
                    0


 Z1                        Z1−ε
        dx                          dx
      √      = lim                √       =
       1 − x2 ε→0                  1 − x2
  0                         0
                                                      1−ε
                                                                                                   π
                                  = lim arcsin x              = lim(arcsin(1 − ε) − arcsin 0) =      .
                                      ε→0
                                                      0
                                                                  ε→0                              2

éÎÔÅÇÒÁÌ ÓÈÏÄÉÔÓÑ É ÅÇÏ ×ÅÌÉÞÉÎÁ ÒÁ×ÎÁ π2 .
              R8 dx
  ðÒÉÍÅÒ 8.      3 x , x = 0 ¡ ÏÓÏÂÁÑ ÔÏÞËÁ.
                 √
                    −1


 Z8           Z0            Z8                      0−ε
                                                    Z 1
      dx           dx             dx                      dx
      √   =        √   +          √  = lim                √   +
      3
        x          3
                     x            3
                                    x ε1 →0               3
                                                            x
 −1           −1            0                   −1
                                Z8                                −ε1                     8
                                     dx        3 2/3                            3
                   + lim             √  = lim    ·x                     + lim x2/3             =
                        ε2 →0        3
                                       x ε1 →0 2                  −1
                                                                          ε2 →0 2
                                                                                          ε2
                             0+ε2
                                                              3 2/3            3           9
                                                          =     (8 − (−1)2/3) = · (4 − 1) = .
                                                              2                2           2