Электродинамика. Исаев Г.П. - 47 стр.

UptoLike

Составители: 

47
рического поля
по з
ральной форме. Для
этого введем в рассмотрение понятие потока вектора индук-
ции магнитного поля
.sdB
=Φ
Циркуляция вектора напряженности элект
амкнутом контуру L, равна быстроте изменения магнит-
ного потока пронизывающего контур, взятой с обратным
знаком.
Запишем выражение (18.7) в интег
S
(18.8)
Продифференцируем по времени левую и правую части
выражения (18.8)
=
=
Φ
S
.sd
B
sdB
tt
S
t
(18.9)
Выражение (18.7) с учетом соотношения (18.9) принимает
вид
.sd
t
B
ldE
SL
=
(18.10)
, является вихревым, силовые линии,
которого являются замкнутыми. Данный факт изобразим с
помощью рис.1.18.
инта или правилом правой руки.
Запишем выражение теорему Стокса для вектора напря-
женности электрического поля
E
.
Выражение (18.10) представляет из себя обобщенный за-
кон электромагнитной индукции в интегральной форме, из
которого следует следующий факт.
Силовые поля, циркуляция которых по замкнутому кон-
туру отлична от нуля, называются соленоидальными или вих-
ревыми. Силовые линии, таких полей являются замкнутыми.
Таким образом, электрическое поле, созданное перемен-
ным магнитным полем
Направление векторов
H
и
B
на рис.1.18 определяется
правилом левого в
    Циркуляция вектора напряженности электрического поля
по замкнутом контуру L, равна быстроте изменения магнит-
ного потока пронизывающего контур, взятой с обратным
знаком.
    Запишем выражение (18.7) в интегральной форме. Для
этого введем в рассмотрение понятие потока вектора индук-
ции магнитного поля
                        ⎛→ →⎞
                       ∫
                 Φ = ⎜ B d s ⎟.
                       S⎝     ⎠
                                                     (18.8)
    Продифференцируем по времени левую и правую части
выражения (18.8)
                                 ⎛ → →⎞
          ∂Φ     ∂ ⎛→ →⎞         ⎜ ∂B      ⎟
           ∂t
              =    ∫ ⎜Bd s ⎟ = ⎜
                ∂t S ⎝     ⎠    S⎜
                                    ∫
                                   ∂t
                                      d s ⎟.
                                           ⎟
                                 ⎝         ⎠         (18.9)
    Выражение (18.7) с учетом соотношения (18.9) принимает
вид
                               ⎛ → →⎞
                ⎛→ →⎞          ⎜ ∂B     ⎟
              ∫ ⎜E d l ⎟ = − ⎜
               L⎝      ⎠
                               ∫
                              S⎜
                                 ∂t
                                    d s ⎟.
                                        ⎟
                               ⎝        ⎠           (18.10)
    Выражение (18.10) представляет из себя обобщенный за-
кон электромагнитной индукции в интегральной форме, из
которого следует следующий факт.
    Силовые поля, циркуляция которых по замкнутому кон-
туру отлична от нуля, называются соленоидальными или вих-
ревыми. Силовые линии, таких полей являются замкнутыми.
    Таким образом, электрическое поле, созданное перемен-
ным магнитным полем, является вихревым, силовые линии,
которого являются замкнутыми. Данный факт изобразим с
помощью рис.1.18.
                           →            →
    Направление векторов H и B на рис.1.18 определяется
правилом левого винта или правилом правой руки.
    Запишем выражение теорему Стокса для вектора напря-
                                →
женности электрического поля E .

                               47